An Algorithm Enumerating All Infinite Repetitions in a D0L System

Karel Klouda
karel.klouda@fit.cvut.cz

joint work with Štěpán Starosta

1Czech Technical University in Prague

Words 2013 in Turku
18th September
D0L system

Definition

A D0L-system is a triplet \(G = (\mathcal{A}, \varphi, w) \) where \(\mathcal{A} \) is an alphabet, \(\varphi \) a morphism on \(\mathcal{A} \), and \(w \in \mathcal{A}^+ \) is the axiom.

The sequence of \(G \):

\[
L(G) = \{ w_0 = w, w_1 = \varphi(w_0), w_2 = \varphi(w_1), \ldots \}.
\]

All factors of \(w_1, w_2, \ldots \) form the language of \(G \), denoted as \(S(L(G)) \).
D0L system

Definition

A **D0L-system** is a triplet \(G = (A, \varphi, w) \) where \(A \) is an alphabet, \(\varphi \) a morphism on \(A \), and \(w \in A^+ \) is the **axiom**.

The sequence of \(G \):

\[
L(G) = \{ w_0 = w, w_1 = \varphi(w_0), w_2 = \varphi(w_1), \ldots \}.
\]

All factors of \(w_1, w_2, \ldots \) form the **language** of \(G \), denoted as \(S(L(G)) \).

\[G = (\{0, 1, 2, 3, 4\}, \varphi, 013) \text{ with } \varphi = (0310, 212, 121, 4, 3):\]

\[
w_0 = 013
\]
\[
w_1 = 0310 212 4
\]
\[
w_2 = 031041210310 121212121 3
\]
\[
w_3 = 03104121031032121212121212 \ldots 0310 2121212121 \ldots 212 4
\]
\[\vdots\]
Repetitive D0L system

Definition

A D0L system G is repetitive if for all $k \in \mathbb{N}$ there exists a word v such that v^k is in the language of G.

It is strongly repetitive if there is a word v such that v^k is in the language of G for all k.
Repetitive D0L system

Definition

A D0L system G is **repetitive** if for all $k \in \mathbb{N}$ there exists a word v such that v^k is in the language of G.
It is **strongly repetitive** if there is a word v such that v^k is in the language of G for all k.

Example

The D0L system $(\{0, 1, 2, 3, 4\}, \varphi, 0)$ with $\varphi = (0310, 212, 121, 4, 3)$ is strongly repetitive with $v = 21$.

Theorem (Ehrenfeucht, Rozenberg (1983))

Every repetitive D0L system is strongly repetitive.
Repetitive D0L system

Definition

A D0L system G is repetitive if for all $k \in \mathbb{N}$ there exists a word v such that v^k is in the language of G.

It is strongly repetitive if there is a word v such that v^k is in the language of G for all k.

Example

The D0L system $(\{0, 1, 2, 3, 4\}, \varphi, 0)$ with $\varphi = (0310, 212, 121, 4, 3)$ is strongly repetitive with $v = 21$.

Theorem (Ehrenfeucht, Rozenberg (1983))

Every repetitive D0L system is strongly repetitive.
Our motivation

We have a tool (KK 2012) for generating all bispecial factors in a given D0L system, but it works only for non-repetitive D0L systems.

We needed a fast and easy to program algorithm deciding repetitiveness.
Our motivation

We have a tool (KK 2012) for generating all bispecial factors in a given D0L system, but it works only for non-repetitive D0L systems.

We needed a fast and easy to program algorithm deciding repetitiveness.

We also believe this tool can be extended to repetitive D0L systems but:

We (probably) need to know all the infinite repetitions.
Known results

Theorem (Ehrenfeucht, Rozenberg (1983))

It is decidable whether a D0L system is repetitive.
Known results

Theorem (Ehrenfeucht, Rozenberg (1983))

It is decidable whether a D0L system is repetitive.

- If the D0L system is not finite nor pushy, their procedure produces unknown number of special D0L systems.
- The original D0L system is repetitive iff one of these special D0L systems is repetitive.
- A special D0L \((A, \varphi, w)\) system is repetitive iff the morphism is \((B, \pi)\)-cyclic for some \(B \subset A\) and \(\pi\) a cyclic permutation of \(B\):
 - for all \(b \in B\), \(\varphi = x\pi(x)\pi^2(x) \cdots \pi^k(x)\) with \(k = |\varphi(b)| - 1\),
 - for all \(b \in B\): if \(c = \pi(b)\) and \(d\) is the last letter of \(\varphi(b)\), then \(\pi(d)\) is the first letter of \(\varphi(c)\).
Known results

- Mignosi, Séébold (1993): they addressed a different problem, decidability of repetitiveness is just a consequence.

- Kobayashi, Otto (2000): polynomial time algorithm, that still can be simplified.
Related problem: periodicity

Problem (ultimate periodicity)

Given a D0L system \((A, \varphi, w)\) such that \(\varphi(w) = wy\) for some \(y \in A^*\). Is \(\varphi^\omega(w)\) ultimately periodic?

- Other proofs: Honkala (2008), Halava, Harju, Kärki (WORDS 2011).

Among other things a very simple algorithm deciding whether a fixed point of a morphism is purely periodic is presented.

Karel Klouda (Czech Technical University in Prague)
Algorithm enumerating all repetitions
Words 2013 in Turku 18th September
Related problem: periodicity

Problem (ultimate periodicity)

Given a D0L system (A, φ, w) such that $\varphi(w) = wy$ for some $y \in A^$. Is $\varphi^\omega(w)$ ultimately periodic?*

- Other proofs: Honkala (2008), Halava, Harju, Kärki (WORDS 2011).

Problem (eventual ultimate periodicity)

Given a D0L system (A, φ, w). Is there $i \geq 0$ and $p > 0$ such that $\varphi^p(w_i) = w_i y$ for some $y \in A^$ and $(\varphi^p)^\omega(w_i)$ ultimately periodic?*

- First proofs: Head, Lando (1986).
- Refined proof and algorithm: Lando (1989):
 > Among other things a very simple algorithm deciding whether a fixed point of a morphism is purely periodic is presented.
Infinite periodic factor

Since the repetitions

$$(123)^\omega, \ (123123)^\omega, \ (312)^\omega, \ (231)^\omega, \ldots$$

are in fact the same, we define:

Definition

Given a D0L system G, we say that v^ω is an **infinite periodic factor** of G if v is a non-empty word and $v^k \in S(L(G))$ for all integers k.

Let v be non-empty and primitive (not a power of a shorter word). We say that infinite periodic factors v^ω and u^ω are **equivalent** if u is a power of a conjugate of v. We denote the equivalence class containing v^ω by $[v]^\omega$.
Example

The morphism

\[\varphi : \ a \to aca, \ b \to badc, \ c \to acab, \ d \to adc \]

is not injective, as \(\varphi(ab) = aca \ badc = acab \ adc = \varphi(cd) \). This means that \{aca, badc, acab, adc\} is not a code.
Simplification of a morphism

Example

The morphism

\[\varphi : \ a \rightarrow aca, \ b \rightarrow badc, \ c \rightarrow acab, \ d \rightarrow adc \]

is not injective, as \(\varphi(ab) = aca badc = acab adc = \varphi(cd) \). This means that \(\{aca, badc, acab, adc\} \) is not a code.

By the defect theorem, there must be three (or less) words \(X, Y, Z \) from \(\{a, b, c, d\}^+ \) such that

\[\{aca, badc, acab, adc\}^* = \{X, Y, Z\}^*. \]
Example

The morphism

\[\varphi : \begin{align*}
a & \rightarrow aca, \\
b & \rightarrow badc, \\
c & \rightarrow acab, \\
d & \rightarrow adc
\end{align*} \]

is not injective, as \(\varphi(ab) = aca badc = acab adc = \varphi(cd) \). This means that \(\{aca, badc, acab, adc\} \) is not a code.

By the defect theorem, there must be three (or less) words \(X, Y, Z \) from \(\{a, b, c, d\}^+ \) such that

\[\{aca, badc, acab, adc\}^* = \{X, Y, Z\}^*. \]

\[g : \begin{align*}
X & \rightarrow b, \\
Y & \rightarrow aca, \\
Z & \rightarrow adc
\end{align*} \]

\[h : \begin{align*}
a & \rightarrow Y, \\
b & \rightarrow XZ, \\
c & \rightarrow YX, \\
d & \rightarrow Z
\end{align*} \]
Simplification of a morphism

Example

The morphism

\[\varphi : \quad a \rightarrow \text{aca}, \quad b \rightarrow \text{badc}, \quad c \rightarrow \text{acab}, \quad d \rightarrow \text{adc} \]

is not injective, as \(\varphi(ab) = \text{aca badc} = \text{acab adc} = \varphi(cd) \). This means that \(\{\text{aca, badc, acab, adc}\} \) is not a code.

By the defect theorem, there must be three (or less) words \(X, Y, Z \) from \(\{a, b, c, d\}^+ \) such that

\[\{\text{aca, badc, acab, adc}\}^* = \{X, Y, Z\}^*. \]

\[g : \quad X \rightarrow b, \quad Y \rightarrow \text{aca}, \quad Z \rightarrow \text{adc} \]
\[h : \quad a \rightarrow Y, \quad b \rightarrow XZ, \quad c \rightarrow YX, \quad d \rightarrow Z \]

We have: \(\varphi = g \circ h \) and

injective simplification \(h \circ g : \quad X \rightarrow XZ, \quad Y \rightarrow YYXY, \quad Z \rightarrow YZYX. \)
Simplification of a morphism

Definition

Let A and B be two finite alphabets and let $\varphi: A^* \mapsto A^*$ and $\psi: B^* \mapsto B^*$ be morphisms. We say ψ is a simplification of φ, if there exist morphisms $h: A^* \mapsto B^*$ and $g: B^* \mapsto A^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#B < \#A$. If a morphism has no simplification, it is called elementary.
Simplification of a morphism

Definition

Let A and B be two finite alphabets and let $\varphi : A^* \mapsto A^*$ and $\psi : B^* \mapsto B^*$ be morphisms. We say ψ is a simplification of φ, if there exist morphisms $h : A^* \mapsto B^*$ and $g : B^* \mapsto A^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#B < \#A$. If a morphism has no simplification, it is called elementary.

- Elementary morphism is injective.
Simplification of a morphism

Definition

Let \mathcal{A} and \mathcal{B} be two finite alphabets and let $\varphi : \mathcal{A}^* \mapsto \mathcal{A}^*$ and $\psi : \mathcal{B}^* \mapsto \mathcal{B}^*$ be morphisms. We say ψ is a simplification of φ, if there exist morphisms $h : \mathcal{A}^* \mapsto \mathcal{B}^*$ and $g : \mathcal{B}^* \mapsto \mathcal{A}^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\# \mathcal{B} < \# \mathcal{A}$. If a morphism has no simplification, it is called elementary.

- Elementary morphism is injective.
- D0L system $(\mathcal{A}, \varphi, w)$ is repetitive iff $(\mathcal{B}, \psi, h(w))$ is repetitive.
Simplification of a morphism

Definition

Let A and B be two finite alphabets and let $\varphi : A^* \mapsto A^*$ and $\psi : B^* \mapsto B^*$ be morphisms. We say ψ is a simplification of φ, if there exist morphisms $h : A^* \mapsto B^*$ and $g : B^* \mapsto A^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#B < \#A$. If a morphism has no simplification, it is called elementary.

- Elementary morphism is injective.
- D0L system (A, φ, w) is repetitive iff $(B, \psi, h(w))$ is repetitive.
- Lando (1989) + our result: There is one-to-one correspondence between infinite periodic factors of these two D0L systems.
Simplification of a morphism

Definition

Let A and B be two finite alphabets and let $\varphi : A^* \rightarrow A^*$ and $\psi : B^* \rightarrow B^*$ be morphisms. We say ψ is a simplification of φ, if there exist morphisms $h : A^* \rightarrow B^*$ and $g : B^* \rightarrow A^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#B \leq \#A$. If a morphism has no simplification, it is called elementary.

- Elementary morphism is injective.

- D0L system (A, φ, w) is repetitive iff $(B, \psi, h(w))$ is repetitive.

- Lando (1989) + our result: There is one-to-one correspondence between infinite periodic factors of these two D0L systems.

- The construction of a simplification of a non-injective morphism can be done in polynomial time.
Graph of infinite factors

Definition

Let $G = (\mathcal{A}, \varphi, \omega)$ be a D0L-system. The graph of infinite periodic factors of G, denoted P_G, is a directed graph with loops allowed and defined as follows:

1. the set of vertices of P_G is the set

$$V(P_G) = \{[v]^{\omega} \mid v^\omega \text{ is an infinite periodic factor of } S(L(G))\};$$

2. there is a directed edge from $[v]^{\omega}$ to $[z]^{\omega}$ if $\varphi(v^\omega) \in [z]^{\omega}$.

Obviously, the outdegree of any vertex of P_G is equal to one.
Lemma

If $G = (A, \varphi, w)$ *is an injective D0L system, then any vertex* $[v]^{\omega} \in P_G$ *has indegree at least 1.*
Graph of infinite factors

Lemma

If $G = (\mathcal{A}, \varphi, w)$ is an injective D0L system, then any vertex $[v]^\omega \in P_G$ has indegree at least 1.

Corollary

If $G = (\mathcal{A}, \varphi, w)$ is an injective D0L system, then its graph of infinite periodic factors P_G is 1-regular. In other words, P_G consists of disjoint cycles.
Pushy D0L system

Definition

Given a morphism \(\varphi \) on \(A \). A letter \(a \in A \) is **bounded** if the language of \((A, \varphi, a)\) is finite; \(A_0 \) is the set of all bounded letters.

Definition

A D0L system \(G \) is **pushy**, if its language contains infinite number of factors over \(A_0 \).
Pushy D0L system

Definition

Given a morphism \(\varphi \) on \(\mathcal{A} \). A letter \(a \in \mathcal{A} \) is **bounded** if the language of \((\mathcal{A}, \varphi, a) \) is finite; \(\mathcal{A}_0 \) is the set of all bounded letters.

Definition

A D0L system \(G \) is **pushy**, if its language contains infinite number of factors over \(\mathcal{A}_0 \).

Example

The D0L system \((\{0, 1, 2, 3, 4\}, \varphi, 0) \) with \(\varphi = (0310, 212, 121, 4, 3) \). The bounded letters are \(\mathcal{A}_0 = \{3, 4\} \). But it is not pushy.
Pushy D0L system

Definition

Given a morphism \(\varphi \) on \(A \). A letter \(a \in A \) is bounded if the language of \((A, \varphi, a) \) is finite; \(A_0 \) is the set of all bounded letters.

Definition

A D0L system \(G \) is pushy, if its language contains infinite number of factors over \(A_0 \).

Example

The D0L system \((\{0, 1, 2, 3, 4\}, \varphi, 0) \) with \(\varphi = (0310, 212, 121, 4, 3) \). The bounded letters are \(A_0 = \{3, 4\} \). But it is not pushy

Example

Consider again the D0L system \((\{0, 1, 2, 3, 4\}, \varphi, 0) \) with \(\varphi = (03103, 212, 121, 4, 3) \). The bounded letters are \(A_0 = \{3, 4\} \). The system is pushy as \((34)^k \) is a factor for all \(k \in \mathbb{N} \).
Pushy D0L system: what is known

- It is decidable whether a D0L system is pushy (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist $a \in A$, $k \in \mathbb{N}^+$, $v \in A^*$ and $u \in A_0^+$ such that $\varphi^k(a) = vau$ or $\varphi^k(a) = uav$.

An algorithm based on a simple graphs.

Graphs on unbounded letters: there is a directed edge from a to b with label u if $\varphi(a) = vbu$ (resp. $\varphi(a) = ubv$) with $v \in A^*$ and $u \in A^*$.

Pushy iff there is a cycle with a nonempty label.

Theorem (Cassaigne, Nicolas (2010))

If G is a non-erasing pushy D0L system, then there exist $K \in \mathbb{N}$ and a finite set U of words from A^*_0 such that every factor from $S(L(G)) \cap A^*_0$ is of one of the following three forms:

1. w_1,
2. $w_1u_1w_2$,
3. $w_1u_1w_2u_2w_3$,

where $u_1, u_2 \in U$, $|w_j| < K$ for all $j \in \{1, 2, 3\}$, and $k_1, k_2 \in \mathbb{N}^+$.

Karel Klouda (Czech Technical University in Prague)

Algorithm enumerating all repetitions

Words 2013 in Turku 18th September
Pushy D0L system: what is known

- It is decidable whether a D0L system is pushy (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist \(a \in \mathcal{A} \), \(k \in \mathbb{N}^+ \), \(v \in \mathcal{A}^* \) and \(u \in \mathcal{A}_0^+ \) such that \(\varphi^k(a) = vau \) or \(\varphi^k(a) = uav \).

- An algorithm based on a simple graphs.
 - Graphs on unbounded letters: there is a directed edge from \(a \) to \(b \) with label \(u \) if \(\varphi(a) = vbu \) (resp. \(\varphi(a) = ubv \)) with \(v \in \mathcal{A}^* \) and \(u \in \mathcal{A}_0^* \).
 - Pushy iff there is a cycle with a non empty label.
Pushy D0L system: what is known

- It is decidable whether a D0L system is pushy (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff **edge condition**: there exist \(a \in A, k \in \mathbb{N}^+, v \in A^* \) and \(u \in A_0^+ \) such that \(\varphi^k(a) = vau \) or \(\varphi^k(a) = uav \).

- An algorithm based on a simple graphs.
 - Graphs on unbounded letters: there is a directed edge from \(a \) to \(b \) with label \(u \) if \(\varphi(a) = vbu \) (resp. \(\varphi(a) = ubv \)) with \(v \in A^* \) and \(u \in A_0^* \).
 - Pushy iff there is a cycle with a non empty label.

Theorem (Cassaigne, Nicolas (2010))

If \(G \) is a non-erasing pushy D0L system, then there exist \(K \in \mathbb{N} \) and a finite set \(\mathcal{U} \) of words from \(A_0^+ \) such that every factor from \(S(L(G)) \cap A_0^+ \) is of one of the following three forms:

1. \(w_1 \),
2. \(w_1 u_1^{k_1} w_2 \),
3. \(w_1 u_1^{k_1} w_2 u_2^{k_2} w_3 \),

where \(u_1, u_2 \in \mathcal{U}, |w_j| < K \) for all \(j \in \{1, 2, 3\} \), and \(k_1, k_2 \in \mathbb{N}^+ \).
Infinite periodic factors containing an unbounded letter

Theorem

If \([v]^{\omega}\) is an infinite periodic factor of a D0L system \(G = (A, \varphi, w)\) such that \(v \notin A_0^+\), then there exist

- \(u\) such that \(u^{\omega}\) is equivalent to \(v^{\omega}\),
- \(a \in A\) and \(\ell \leq \#A\) such that \(u^{\omega}\) is the fixed point of \(\varphi^\ell\) starting with \(a\).

In other words: all infinite periodic factors containing an unbounded letter are purely periodic.
Theorem

If $[v]^\omega$ is an infinite periodic factor of a D0L system $G = (\mathcal{A}, \varphi, w)$ such that $v \not\in \mathcal{A}_0^+$, then there exist

- u such that u^ω is equivalent to v^ω,
- $a \in \mathcal{A}$ and $\ell \leq \#\mathcal{A}$ such that u^ω is the fixed point of φ^ℓ starting with a.

In other words: all infinite periodic factors containing an unbounded letter are purely periodic periodic points of φ.
Problem: for a morphism \(\varphi \) over \(\mathcal{A} \), letter \(a \in \mathcal{A} \) and integer \(\ell \) such that \(\varphi^\ell(a) = av \) with \(v \in \mathcal{A}^+ \) decide whether \((\varphi^\ell)\infty(a) \) is purely periodic:

1. If \(v \in \mathcal{A}_0^+ \), return the result: \((\varphi^\ell)\omega(a) \) is not purely periodic (but eventually periodic).
2. Apply \(\varphi^\ell \) to \(a \) until \((\varphi^\ell)^k(a) \) contains two occurrences of one unbounded letter \((k < \#\mathcal{A}) \).
3. If this letter is not \(a \), then \((\varphi^\ell)\omega(a) \) is not periodic, if it is, denote \(u \) the longest prefix containing \(a \) only as the first letter.
4. Now, \((\varphi^\ell)\omega(a) \) is periodic if and only if \(\varphi^\ell(u) = u^m \) for some integer \(m \geq 2 \).
A note about the algorithm by Ehrenfeucht and Rozenberg

Corollary

Let $G = (A, \varphi, w)$ with φ injective and $A_0 = \emptyset$. It holds that G is repetitive iff φ is (B, π)-cyclic for some $B \subseteq \text{alph}(S(L(G)))$ and π a cyclic permutation of B.

Proof.

- There must be a primitive u and $\ell \geq 1$ such that $\varphi^\ell(u) = u^m$ with $m \geq 2$.
- Each letter is contained in u at most once.
- Put $B = \text{alph}(u)$ and let π be the permutation determined by the order of letters in u, then φ is (B, π)-cyclic.
Thank you for your attention!