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Rényi expansion of unity in base β > 1

dβ(1) = t1t2t3 · · · , ti =
⌊
βT i−1

β (1)
⌋
,

where

Tβ : [0,1]→ [0,1), Tβ(x) := βx − bβxc = {βx}.

• Parry number: dβ(1) is eventually periodic,
• simple Parry number: dβ(1) = t1 · · · tm,
• non-simple Parry number: dβ(1) = t1 · · · tm(tm+1tm+2 . . . tm+p)ω.
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Simple Parry numbers

dβ(1) = t1 · · · tm
Canonical substitution ϕβ over the alphabet A = {0,1, . . . ,m − 1}

ϕβ(0) = 0t11
ϕβ(1) = 0t22

...
ϕβ(m−2) = 0tm−1(m−1)
ϕβ(m−1) = 0tm
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Non-simple Parry numbers
dβ(1) = t1 · · · tm(tm+1tm+2 . . . tm+p)ω

Canonical substitution ϕβ over the alphabet
A = {0,1, . . . ,m + p − 1}

ϕβ(0) = 0t11
ϕβ(1) = 0t22

...
ϕβ(m−1) = 0tmm
ϕβ(m) = 0tm+1(m+1)

...
ϕβ(m+p−2) = 0tm+p−1(m+p−1)
ϕβ(m+p−1) = 0tm+pm

Fixed point uβ = limn→∞ ϕ
n
β(0) = 0t11 · · · .
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Basic definitions – factor complexity

A = {0,1, . . . ,q − 1} alphabet

u = (ui)i∈N, ui ∈ A infinite word over A
w = ujuj+1 · · ·uj+n−1 factor of u of length n

Ln(u) the set of factors of u of length n

L(u) =
⋃

n∈N Ln(u) the language of u

Factor complexity of u is the function C : N→ N, given by
C(n) := #Ln(u).
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Basic definitions – fixed point of substitution

ϕ(0) = 0v , v ∈ A+, then the fixed point of ϕ given by
u := limn→∞ ϕ

n(0) = ϕω(0) is an infinite word which is uniformly
recurrent.

A substitution ϕ is primitive if for all a,b ∈ A there exists k ∈ N such
that the word ϕk (a) contains b. In what follows, we assume that
ϕ is primitive and injective.

In general, complexity of a fixed point of any primitive substitution is
a sublinear function C(n) ≤ an + b,a,b ∈ N.
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Known results for simple Parry numbers

Simple Parry numbers (Bernat, Frougny, Masáková, Pelantová):

• t1 = t2 = · · · = tm−1 or t1 > max{t2, . . . , tm−1} exact value
of C(n) is known,

• in particular, (m − 1)n + 1 ≤ C(n) ≤ mn, for all n ≥ 1,
• C(n) is affine⇔

1) tm = 1
2) for all i = 2,3, . . . ,m−1 we have

ti ti+1 . . . tm−1t1 . . . ti−1 � t1t2 . . . tm−1.

Then C(n) = (m − 1)n + 1.
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Special factors

For v ∈ L(u) we define the set of left extensions

Lext(v) := {a ∈ A | av ∈ L(u)}.

If #Lext(v) > 1, then v is said to be left special (LS) factor.
Analogously are defined right special (RS) factors.
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LS factors and factor complexity
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Cu(n + 1)− Cu(n) = 3
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LS factors and factor complexity
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LS factors and factor complexity

For the first difference of the complexity function holds:

MC(n) := C(n + 1)− C(n) =
∑

v∈Ln(u)
v is LS

(#Lext(v)− 1).

Complete knowledge of all LS factors along with the number of
their left extensions allow us to evaluate C(n).

MC(n) ≥ 1 for all n ∈ N⇔ u is aperiodic.
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Structure of LS factors – infinite LS branches

Definition
An infinite word w is called infinite LS branch of u if each prefix of w
is a LS factor of u.

Lext(w) =
⋂

v prefix w

Lext(v).

• u periodic⇒ no infinite LS branches,
• u aperiodic⇒ at least one infinite LS branch,
• u is a fixed point of a primitive substitution⇒ finite number of

infinite LS branches
(consequence of the fact that MC(n) is bounded (Mossé,
Cassaigne))
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Structure of LS factors – maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ∈ A, ve
is not a LS factor.
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Structure of LS factors – maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ∈ A, ve
is not a LS factor.
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Structure of LS factors – maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ∈ A, ve
is not a LS factor.
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Structure of LS factors – maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ∈ A, ve
is not a LS factor.

a

c

e

fb

v

Definition
A LS factor v having a,b ∈ Lext(v) is called (a,b)-maximal LS
factor if for each letter e ∈ A we is not a LS factor with left
extensions a and b.
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Images of LS factors

Example: ϕ : 1 7→ 1211,2 7→ 311,3 7→ 2412,4 7→ 435,5 7→ 534

u = ϕω(1)

w is a LS factor of u with left extensions 1 and 2
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Graph GLϕ

Vertices: unordered couples of distinct letters (a,b).

Edges: if gL(a,b) = {c,d}, then there is an edge between (a,b)
and (c,d) with label fL(a,b).
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Vertices: unordered couples of distinct letters (a,b).

Edges: if gL(a,b) = {c,d}, then there is an edge between (a,b)
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Structure of infinite branches
Assumption: For each infinite LS branch w it holds that

a) f -image of w is uniquely given,
b) there exists exactly one infinite LS branch w′ such that w is
f -image of w′.

wa
b

fL(a, b)ϕ(w)

f-image

f-image

f-image

f-image

• fL = ε⇒ w = ϕl(w) and (a,b) is a vertex of a cycle labelled by
ε only,

• otherwise, (a,b) is a vertex of a cycle labelled not only by ε.
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Structure of infinite branches

Assumption: For each infinite LS branch w it holds that
a) f -image of w is uniquely given,
b) there exists exactly one infinite LS branch w′ such that w is
f -image of w′.

Theorem
Let w be an infinite LS branch, a,b ∈ Lext(w). Then there exists
l > 0 such that

w = fL(g l−1
L (a,b)) · · ·ϕl−2(fL(gL(a,b))ϕl−1(fL(a,b))ϕl(w).

• fL = ε⇒ w = ϕl(w) and (a,b) is a vertex of a cycle labelled by
ε only,

• otherwise, (a,b) is a vertex of a cycle labelled not only by ε.
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Example – how to identify infinite LS branche
ϕ : 1 7→ 1211,2 7→ 311,3 7→ 2412,4 7→ 435,5 7→ 534

Lext(1) = {1,2,3,4,5},Lext(2) = {1,4,5},Lext(3) =
{1,4,5},Lext(4) = {1,2,3},Lext(5) = {1,2,3}
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• w = 11ϕ2(w) → 11ϕ2(11)ϕ4(11) · · ·
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Example – how to identify infinite LS branche
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• ϕ(11)ϕ3(11) · · · , 11ϕ2(11)ϕ4(11) · · ·
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Example – how to identify infinite LS branche
ϕ : 1 7→ 1211,2 7→ 311,3 7→ 2412,4 7→ 435,5 7→ 534
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• ϕ(11)ϕ3(11) · · · , 11ϕ2(11)ϕ4(11) · · ·
• ϕω(1), ϕω(4), ϕω(5), (ϕ2)ω(2), (ϕ2)ω(3)
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• ϕ(11)ϕ3(11) · · · , 11ϕ2(11)ϕ4(11) · · ·
• ϕω(1), (ϕ2)ω(2), (ϕ2)ω(3)
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GLϕβ
for simple Parry numbers

fL(a,b) = ε for all a,b ∈ {0,1, . . . ,m − 1} and uβ = ϕωβ (0) is the
only fixed point

1
k + 1

0
k m− 1

m− k − 1ε ε

m− 1
k − 1

m− k
0

ε
εε

k = 1, . . . ,m− 1

⇒ uβ is the only infinite LS branch
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GLϕβ
for non-simple Parry numbers

m− 1 7→ 0tmm,m + p− 1 7→ 0tm+pm, fL(m− 1,m + p− 1) = 0tm, t =
min{tm, tm+p}, Lext(0tm) = {0, z}, s ≥ 1

1
k ⊕ 1

ε

0
k k ⊕m

m + p− 1
k ⊕m + p− 1

mε εε

k 6= sp

1
sp⊕ 1

0
sp sp⊕m− 1

m− 1ε ε
z = sp

0tm
yes

no

0tm
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Infinite LS factors

t = min{tm, tm+p}, Lext(0tm) = {0, z}, s ≥ 1

Definition
β ∈ S ⇔ z = sp ⇔

a) dβ(1) = t1 . . . tm(0 . . . 0tm+p)ω and tm > tm+p

b) dβ(1) = t1 . . . tm−qp︸ ︷︷ ︸
6=0

0 . . . 0︸ ︷︷ ︸
qp−1

tm(tm + 1 · · · tm+p)ω, q ≥ 1, tm < tm+p,

β ∈ S0 ⇔ dβ(1) = t1(0 · · · 0(t1 − 1))ω.
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Infinite LS factors

Theorem

• If β is a non-simple Parry and p > 1, then uβ is an infinite LS
branch with left extensions {m,m + 1, . . . ,m + p − 1}.

• If β /∈ S, then uβ is the only one infinite LS branch.
• If β ∈ S, then there are m infinite LS branches

0tmϕm(0tm)ϕ2m(0tm) . . .

...

ϕm−1(0tm)ϕ2m−1(0tm)ϕ3m−1(0tm) . . . .
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Maximal LS factors

f -image of maximal factors

a

b
w fL(a, b)ϕ(w)fR(c, d)

f-imagec

d
gL(a, b) gR(c, d)

Theorem

• If t1 > 1 and β /∈ S0, then (a,b)-maximal factors are f -images
of the (0,p)-maximal factor 0t1−1

ϕn(0t1−11)(1 + n)−1, n = 0,1, . . . ,m − 1

0tmϕm(0t1−11)(1 + m)−1, · · ·

• If β ∈ S0, there are no (a,b)-maximal factors in uβ.
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Affine complexity

Theorem

• The factor complexity of uβ is affine⇔ uβ does not contain any
(a,b)-maximal factor⇔ β ∈ S0 ⇔ dβ(1) = t1(0 · · · 0(t1 − 1))ω.
Then C(n) = (m + p − 1)n + 1.

• The first equivalence is not valid in general (Chacon),
• β ∈ S0 ⇒ β is an unitary Pisot number (Frougny).

• If p > 1 and β ∈ S0, then uβ and 0−1uβ are the only infinite LS
branches.

• known result: uβ is Sturmian⇔ p = 1 and β ∈ S0, i.e.
dβ(1) = t1(t1 − 1)ω.
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• The factor complexity of uβ is affine⇔ uβ does not contain any
(a,b)-maximal factor⇔ β ∈ S0 ⇔ dβ(1) = t1(0 · · · 0(t1 − 1))ω.
Then C(n) = (m + p − 1)n + 1.

• The first equivalence is not valid in general (Chacon),
• β ∈ S0 ⇒ β is an unitary Pisot number (Frougny).

• If p > 1 and β ∈ S0, then uβ and 0−1uβ are the only infinite LS
branches.

• known result: uβ is Sturmian⇔ p = 1 and β ∈ S0, i.e.
dβ(1) = t1(t1 − 1)ω.

THE END
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