Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Factor complexity of infinite words associated with β -expansions

Karel Klouda¹,² karel@kloudak.eu

Joint work with E.Pelantová¹

¹FNSPE, CTU in Prague

²LIAFA, Université Paris 7

Journées Numération, Prague 26th May, 2008

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Rényi expansion of unity in base $\beta > 1$

$$d_{\beta}(1) = t_1 t_2 t_3 \cdots, \qquad t_i = \left\lfloor \beta T_{\beta}^{i-1}(1) \right\rfloor,$$

where

$$T_{\beta}: [0,1] \rightarrow [0,1), \quad T_{\beta}(x):=\beta x - \lfloor \beta x \rfloor = \{\beta x\}.$$

- Parry number: $d_{\beta}(1)$ is eventually periodic,
- simple Parry number: $d_{\beta}(1) = t_1 \cdots t_m$,
- non-simple Parry number: $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} t_{m+2} \dots t_{m+p})^{\omega}$.

Factor complexity of infinite word

Infinite LS branches

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Results

Simple Parry numbers

 $d_{\beta}(1) = t_1 \cdots t_m$

Canonical substitution φ_{β} over the alphabet $\mathcal{A} = \{0, 1, \dots, m-1\}$

$$egin{array}{rcl} arphi_eta(0) &=& 0^{t_1}1 \ arphi_eta(1) &=& 0^{t_2}2 \ dots &dots &dots$$

Infinite LS branches

Results

Non-simple Parry numbers

$$d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} t_{m+2} \dots t_{m+p})^{\omega}$$

Canonical substitution φ_{β} over the alphabet $\mathcal{A} = \{0, 1, \dots, m + p - 1\}$

$$\begin{array}{rcl} \varphi_{\beta}(0) & = & 0^{t_{1}}1 \\ \varphi_{\beta}(1) & = & 0^{t_{2}}2 \\ & \vdots \\ \varphi_{\beta}(m-1) & = & 0^{t_{m}}m \\ \varphi_{\beta}(m) & = & 0^{t_{m+1}}(m+1) \\ & \vdots \\ \varphi_{\beta}(m+p-2) & = & 0^{t_{m+p-1}}(m+p-1) \\ \varphi_{\beta}(m+p-1) & = & 0^{t_{m+p}}m \end{array}$$

Fixed point $\mathbf{u}_{\beta} = \lim_{n \to \infty} \varphi_{\beta}^{n}(\mathbf{0}) = \mathbf{0}^{t_{1}} \mathbf{1} \cdots$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Basic definitions - factor complexity

- $\mathcal{A} = \{0, 1, \dots, q-1\} \quad \text{alphabet}$
- $\mathbf{u} = (\mathbf{u}_i)_{i \in \mathbb{N}}, \, \mathbf{u}_i \in \mathcal{A}$ infinite word over \mathcal{A}
- $w = \mathbf{u}_{j}\mathbf{u}_{j+1}\cdots\mathbf{u}_{j+n-1}$ factor of **u** of length *n*
- $\mathcal{L}_n(\mathbf{u})$ the set of factors of \mathbf{u} of length n
- $\mathcal{L}(\mathbf{u}) = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n(\mathbf{u})$ the language of \mathbf{u}

Factor complexity of **u** is the function $C : \mathbb{N} \to \mathbb{N}$, given by $C(n) := \# \mathcal{L}_n(\mathbf{u})$.

(日) (日) (日) (日) (日) (日) (日)

Basic definitions – fixed point of substitution

 $\varphi(0) = 0v, v \in A^+$, then *the fixed point* of φ given by $\mathbf{u} := \lim_{n \to \infty} \varphi^n(0) = \varphi^{\omega}(0)$ is an infinite word which is *uniformly recurrent*.

A substitution φ is primitive if for all $a, b \in A$ there exists $k \in \mathbb{N}$ such that the word $\varphi^k(a)$ contains *b*. In what follows, we assume that φ is *primitive and injective*.

In general, complexity of a fixed point of any primitive substitution is a sublinear function $C(n) \le an + b, a, b \in \mathbb{N}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Known results for simple Parry numbers

Simple Parry numbers (Bernat, Frougny, Masáková, Pelantová):

- $t_1 = t_2 = \cdots = t_{m-1}$ or $t_1 > \max\{t_2, \ldots, t_{m-1}\}$ exact value of C(n) is known,
- in particular, $(m-1)n + 1 \leq C(n) \leq mn$, for all $n \geq 1$,
- C(n) is affine \Leftrightarrow

1)
$$t_m = 1$$

2) for all i = 2, 3, ..., m-1 we have

$$t_i t_{i+1} \ldots t_{m-1} t_1 \ldots t_{i-1} \quad \preceq \quad t_1 t_2 \ldots t_{m-1}.$$

Then C(n) = (m - 1)n + 1.

Factor complexity of infinite word

Infinite LS branches

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Results

Special factors

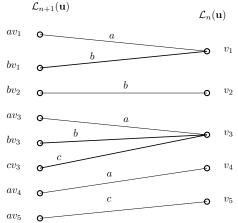
For $v \in \mathcal{L}(\mathbf{u})$ we define the set of *left extensions*

$$\mathsf{Lext}(\boldsymbol{v}) := \{ \boldsymbol{a} \in \mathcal{A} \mid \boldsymbol{av} \in \mathcal{L}(\boldsymbol{u}) \}.$$

If #Lext(v) > 1, then v is said to be *left special (LS) factor*. Analogously are defined right special (RS) factors.

Factor complexity of infinite word 00000000

LS factors and factor complexity



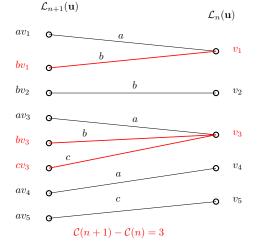
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Factor complexity of infinite word

Infinite LS branches

Results

LS factors and factor complexity



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

LS factors and factor complexity

For the first difference of the complexity function holds:

$$\triangle C(n) := C(n+1) - C(n) = \sum_{\substack{v \in \mathcal{L}_n(\mathbf{u}) \\ v \text{ is LS}}} (\# \text{Lext}(v) - 1).$$

Complete knowledge of all LS factors along with the number of their left extensions allow us to evaluate C(n).

 $riangle \mathcal{C}(n) \geq 1$ for all $n \in \mathbb{N} \Leftrightarrow \mathbf{u}$ is aperiodic.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Structure of LS factors – infinite LS branches

Definition

An infinite word \mathbf{w} is called infinite LS branch of \mathbf{u} if each prefix of \mathbf{w} is a LS factor of \mathbf{u} .

$$Lext(\mathbf{w}) = \bigcap_{v \text{ prefix } \mathbf{w}} Lext(v).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Structure of LS factors - infinite LS branches

Definition

An infinite word \mathbf{w} is called infinite LS branch of \mathbf{u} if each prefix of \mathbf{w} is a LS factor of \mathbf{u} .

$$Lext(\mathbf{w}) = \bigcap_{v \text{ prefix } \mathbf{w}} Lext(v).$$

• **u** periodic \Rightarrow no infinite LS branches,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Structure of LS factors – infinite LS branches

Definition

An infinite word \mathbf{w} is called infinite LS branch of \mathbf{u} if each prefix of \mathbf{w} is a LS factor of \mathbf{u} .

$$Lext(\mathbf{w}) = \bigcap_{v \text{ prefix } \mathbf{w}} Lext(v).$$

- **u** periodic \Rightarrow no infinite LS branches,
- **u** aperiodic \Rightarrow at least one infinite LS branch,

Structure of LS factors - infinite LS branches

Definition

An infinite word \mathbf{w} is called infinite LS branch of \mathbf{u} if each prefix of \mathbf{w} is a LS factor of \mathbf{u} .

$$Lext(\mathbf{w}) = \bigcap_{v \text{ prefix } \mathbf{w}} Lext(v).$$

- **u** periodic \Rightarrow no infinite LS branches,
- **u** aperiodic \Rightarrow at least one infinite LS branch,
- u is a fixed point of a primitive substitution ⇒ finite number of infinite LS branches (consequence of the fact that △C(n) is bounded (Mossé, Cassaigne))

Factor complexity of infinite word

Infinite LS branches

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Results

Structure of LS factors – maximal LS factors

Definition A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.

Factor complexity of infinite word

Infinite LS branches

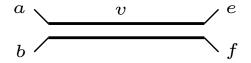
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Results

Structure of LS factors – maximal LS factors

Definition

A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.

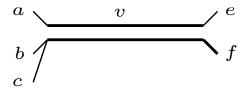


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Structure of LS factors – maximal LS factors

Definition

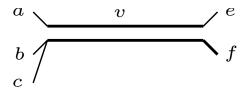
A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.



Structure of LS factors – maximal LS factors

Definition

A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.



Definition

A LS factor v having $a, b \in Lext(v)$ is called (a, b)-maximal LS factor if for each letter $e \in A$ we is not a LS factor with left extensions a and b.

Images of LS factors

Example: $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$ $\mathbf{u} = \varphi^{\omega}(1)$

w is a LS factor of **u** with left extensions 1 and 2

Images of LS factors

Example: $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$ $\mathbf{u} = \varphi^{\omega}(1)$

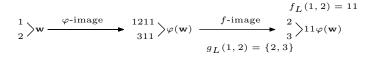
w is a LS factor of **u** with left extensions 1 and 2

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Images of LS factors

Example: $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$ $\mathbf{u} = \varphi^{\omega}(1)$

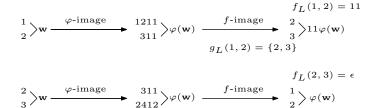
w is a LS factor of **u** with left extensions 1 and 2



Images of LS factors

Example: $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$ $\mathbf{u} = \varphi^{\omega}(1)$

w is a LS factor of **u** with left extensions 1 and 2



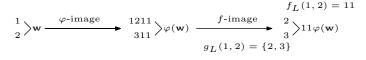
 $q_{T}(2,3) = \{1,2\}$

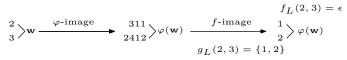
A D F A 同 F A E F A E F A Q A

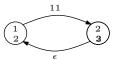
Images of LS factors

Example: $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$ $\mathbf{u} = \varphi^{\omega}(1)$

w is a LS factor of **u** with left extensions 1 and 2







◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Factor complexity of infinite word

Infinite LS branches

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Results

Graph GL_{φ}

Vertices: unordered couples of distinct letters (a, b).

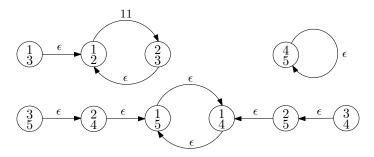
Edges: if $g_L(a, b) = \{c, d\}$, then there is an edge between (a, b) and (c, d) with label $f_L(a, b)$.

Graph GL_{φ}

Vertices: unordered couples of distinct letters (a, b).

Edges: if $g_L(a, b) = \{c, d\}$, then there is an edge between (a, b) and (c, d) with label $f_L(a, b)$.

Example: $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$

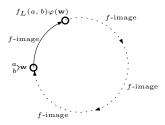


◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Structure of infinite branches

Assumption: For each infinite LS branch w it holds that

- a) f-image of w is uniquely given,
- b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is *f*-image of \mathbf{w}' .



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Structure of infinite branches

Assumption: For each infinite LS branch w it holds that

a) f-image of **w** is uniquely given,

b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is *f*-image of \mathbf{w}' .

Theorem

Let **w** be an infinite LS branch, $a, b \in Lext(w)$. Then there exists l > 0 such that

$$\mathbf{w} = f_L(g_L^{l-1}(a,b)) \cdots \varphi^{l-2}(f_L(g_L(a,b))\varphi^{l-1}(f_L(a,b))\varphi^l(\mathbf{w}).$$

Results

Structure of infinite branches

Assumption: For each infinite LS branch w it holds that

a) f-image of **w** is uniquely given,

b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is *f*-image of \mathbf{w}' .

Theorem

Let **w** be an infinite LS branch, $a, b \in Lext(w)$. Then there exists l > 0 such that

$$\mathbf{w} = f_L(g_L^{l-1}(a,b)) \cdots \varphi^{l-2}(f_L(g_L(a,b))\varphi^{l-1}(f_L(a,b))\varphi^l(\mathbf{w}).$$

• $f_L = \epsilon \Rightarrow \mathbf{w} = \varphi^l(\mathbf{w})$ and (a, b) is a vertex of a cycle labelled by ϵ only,

Structure of infinite branches

Assumption: For each infinite LS branch w it holds that

a) f-image of **w** is uniquely given,

b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is *f*-image of \mathbf{w}' .

Theorem

Let **w** be an infinite LS branch, $a, b \in Lext(w)$. Then there exists l > 0 such that

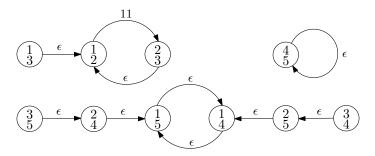
$$\mathbf{w} = f_L(g_L^{l-1}(a,b)) \cdots \varphi^{l-2}(f_L(g_L(a,b))\varphi^{l-1}(f_L(a,b))\varphi^l(\mathbf{w}).$$

- $f_L = \epsilon \Rightarrow \mathbf{w} = \varphi^l(\mathbf{w})$ and (a, b) is a vertex of a cycle labelled by ϵ only,
- otherwise, (a, b) is a vertex of a cycle labelled not only by ϵ .

Example – how to identify infinite LS branche

 $arphi: \mathbf{1} \mapsto \mathbf{1211}, \mathbf{2} \mapsto \mathbf{311}, \mathbf{3} \mapsto \mathbf{2412}, \mathbf{4} \mapsto \mathbf{435}, \mathbf{5} \mapsto \mathbf{534}$

$$Lext(1) = \{1, 2, 3, 4, 5\}, Lext(2) = \{1, 4, 5\}, Lext(3) = \\ \{1, 4, 5\}, Lext(4) = \{1, 2, 3\}, Lext(5) = \{1, 2, 3\}$$

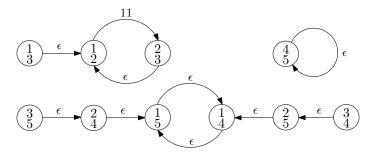


Results

Example – how to identify infinite LS branche

 $\varphi: \mathbf{1} \mapsto \mathbf{1211}, \mathbf{2} \mapsto \mathbf{311}, \mathbf{3} \mapsto \mathbf{2412}, \mathbf{4} \mapsto \mathbf{435}, \mathbf{5} \mapsto \mathbf{534}$

Lext(1) =
$$\{1, 2, 3, 4, 5\}$$
, Lext(2) = $\{1, 4, 5\}$, Lext(3) = $\{1, 4, 5\}$, Lext(4) = $\{1, 2, 3\}$, Lext(5) = $\{1, 2, 3\}$



• $\mathbf{w} = 11\varphi^2(\mathbf{w}) \rightarrow 11\varphi^2(11)\varphi^4(11)\cdots$

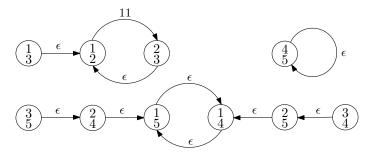
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results

Example – how to identify infinite LS branche

 $\varphi: \mathbf{1} \mapsto \mathbf{1211}, \mathbf{2} \mapsto \mathbf{311}, \mathbf{3} \mapsto \mathbf{2412}, \mathbf{4} \mapsto \mathbf{435}, \mathbf{5} \mapsto \mathbf{534}$

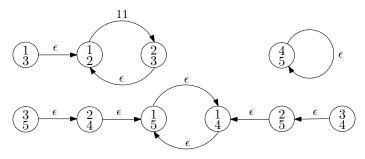
$$\begin{array}{l} \text{Lext}(1) = \{1,2,3,4,5\}, \text{Lext}(2) = \{1,4,5\}, \text{Lext}(3) = \\ \{1,4,5\}, \text{Lext}(4) = \{1,2,3\}, \text{Lext}(5) = \{1,2,3\} \end{array}$$



• $\varphi(11)\varphi^3(11)\cdots, 11\varphi^2(11)\varphi^4(11)\cdots$

Results

Example – how to identify infinite LS branche $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$ Lext(1) = {1,2,3,4,5}, Lext(2) = {1,4,5}, Lext(3) = {1,4,5}, Lext(4) = {1,2,3}, Lext(5) = {1,2,3}

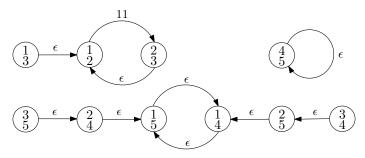


- $\varphi(11)\varphi^{3}(11)\cdots, 11\varphi^{2}(11)\varphi^{4}(11)\cdots$
- φ^ω(1), φ^ω(4), φ^ω(5), (φ²)^ω(2), (φ²)^ω(3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results

Example – how to identify infinite LS branche $\varphi : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$ Lext(1) = {1,2,3,4,5}, Lext(2) = {1,4,5}, Lext(3) = {1,4,5}, Lext(4) = {1,2,3}, Lext(5) = {1,2,3}



- $\varphi(11)\varphi^3(11)\cdots, 11\varphi^2(11)\varphi^4(11)\cdots$
- $\varphi^{\omega}(1), (\varphi^2)^{\omega}(2), (\varphi^2)^{\omega}(3)$

Factor complexity of infinite word

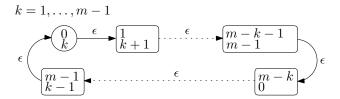
Infinite LS branches

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results

 $GL_{\varphi_{\beta}}$ for simple Parry numbers

 $f_L(a, b) = \epsilon$ for all $a, b \in \{0, 1, ..., m-1\}$ and $\mathbf{u}_{\beta} = \varphi_{\beta}^{\omega}(0)$ is the only fixed point



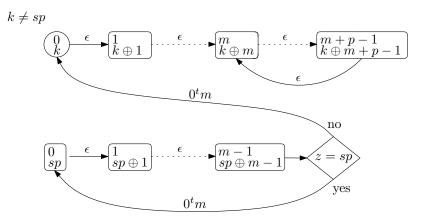
 \Rightarrow **u**^{β} is the only infinite LS branch

Infinite LS branches

Results

$GL_{\varphi_{\beta}}$ for non-simple Parry numbers

 $m-1 \mapsto 0^{t_m}m, m+p-1 \mapsto 0^{t_{m+p}}m, f_L(m-1, m+p-1) = 0^t m, t = \min\{t_m, t_{m+p}\}, \text{Lext}(0^t m) = \{0, z\}, s \ge 1$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Factor complexity of infinite word

Infinite LS branches

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Results

Infinite LS factors

$$t = \min\{t_m, t_{m+p}\}, \text{Lext}(0^t m) = \{0, z\}, s \ge 1$$

Definition

 $\beta \in \mathcal{S} \Leftrightarrow \mathbf{Z} = \mathbf{S}\mathbf{p} \Leftrightarrow$

a)
$$d_{\beta}(1) = t_1 \dots t_m (0 \dots 0 t_{m+p})^{\omega}$$
 and $t_m > t_{m+p}$
b) $d_{\beta}(1) = t_1 \dots \underbrace{t_{m-qp}}_{\neq 0} \underbrace{0 \dots 0}_{qp-1} t_m (t_m + 1 \dots t_{m+p})^{\omega}$, $q \ge 1$, $t_m < t_{m+p}$,

 $\beta \in \mathcal{S}_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1 - 1))^{\omega}.$

Factor complexity of infinite word

Infinite LS branches

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Results

Infinite LS factors

Theorem

If β is a non-simple Parry and p > 1, then u_β is an infinite LS branch with left extensions {m, m + 1,..., m + p − 1}.

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Infinite LS factors

- If β is a non-simple Parry and p > 1, then u_β is an infinite LS branch with left extensions {m, m + 1,..., m + p − 1}.
- If $\beta \notin S$, then \mathbf{u}_{β} is the only one infinite LS branch.

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Infinite LS factors

Theorem

- If β is a non-simple Parry and p > 1, then u_β is an infinite LS branch with left extensions {m, m + 1,..., m + p − 1}.
- If $\beta \notin S$, then \mathbf{u}_{β} is the only one infinite LS branch.
- If $\beta \in S$, then there are m infinite LS branches

 $0^t m \varphi^m (0^t m) \varphi^{2m} (0^t m) \dots$

.

$$\varphi^{m-1}(0^t m)\varphi^{2m-1}(0^t m)\varphi^{3m-1}(0^t m)\ldots$$

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Maximal LS factors

f-image of maximal factors

$$\overset{\mathbf{a}}{\overset{\mathbf{b}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{d}}}{\overset{\mathbf{d}}{\overset{\mathbf{d}}}{\overset{\mathbf{d}}}{\overset{\mathbf{d}}{\overset{d}{\overset{}}{\overset{\\{}}$$

Theorem

 If t₁ > 1 and β ∉ S₀, then (a, b)-maximal factors are f-images of the (0, p)-maximal factor 0^{t₁-1}

$$\varphi^n(0^{t_1-1}1)(1+n)^{-1}, \quad n=0,1,\ldots,m-1$$

 $0^t m \varphi^m(0^{t_1-1}1)(1+m)^{-1}, \quad \cdots$

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results

Maximal LS factors

f-image of maximal factors

$$\overset{\mathbf{a}}{\overset{\mathbf{b}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{d}}}{\overset{\mathbf{d}}{\overset{\mathbf{d}}}{\overset{\mathbf{d}}}{\overset{\mathbf{d}}{\overset{d}{\overset{}}{\overset{\\{}}$$

Theorem

 If t₁ > 1 and β ∉ S₀, then (a, b)-maximal factors are f-images of the (0, p)-maximal factor 0^{t₁-1}

$$\varphi^n(0^{t_1-1}1)(1+n)^{-1}, \quad n=0,1,\ldots,m-1$$

 $0^t m \varphi^m(0^{t_1-1}1)(1+m)^{-1}, \quad \cdots$

• If $\beta \in S_0$, there are no (a, b)-maximal factors in \mathbf{u}_{β} .

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Affine complexity

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a, b)-maximal factor $\Leftrightarrow \beta \in S_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1 1))^{\omega}$. Then C(n) = (m + p - 1)n + 1.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in S_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results

Affine complexity

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a, b)-maximal factor $\Leftrightarrow \beta \in S_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1 1))^{\omega}$. Then C(n) = (m + p - 1)n + 1.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in S_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).
- If p > 1 and β ∈ S₀, then u_β and 0⁻¹u_β are the only infinite LS branches.

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Affine complexity

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a, b)-maximal factor $\Leftrightarrow \beta \in S_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1 1))^{\omega}$. Then C(n) = (m + p - 1)n + 1.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in S_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).
- If p > 1 and β ∈ S₀, then u_β and 0⁻¹u_β are the only infinite LS branches.
- known result: \mathbf{u}_{β} is Sturmian $\Leftrightarrow p = 1$ and $\beta \in S_0$, i.e. $d_{\beta}(1) = t_1(t_1 1)^{\omega}$.

Factor complexity of infinite word

Infinite LS branches

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results

Affine complexity

Theorem

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a, b)-maximal factor $\Leftrightarrow \beta \in S_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1 1))^{\omega}$. Then C(n) = (m + p - 1)n + 1.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in S_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).
- If p > 1 and β ∈ S₀, then u_β and 0⁻¹u_β are the only infinite LS branches.
- known result: \mathbf{u}_{β} is Sturmian $\Leftrightarrow p = 1$ and $\beta \in S_0$, i.e. $d_{\beta}(1) = t_1(t_1 1)^{\omega}$.

THE END