Bispecial factors in D0L languages

Karel Klouda¹ karel.klouda@fit.cvut.cz

joint work with Štěpán Starosta¹

¹FIT, CTU in Prague

MELA 2013 10th September 2013

Outline

What are DOL systems: examples, basic properties.

- **2** Bispecial factors and why they are interesting.
- Injective, primitive, pushy and circular D0L systems.
- Algorithm describing all bispecial factors. It works only for non-repetitive DOL systems!!
- What about repetitive D0L systems?

Alphabet, (endo)morphism

- An alphabet $\mathcal A$ is a finite set of letters,
 - ► {0,1,2,3},
 - ► {*a*, *b*, *c*}.

э

< □ > < □ > < □ > < □ > < □ >

Alphabet, (endo)morphism

- An alphabet $\mathcal A$ is a finite set of letters,
 - ▶ {0,1,2,3},
 - ► {*a*, *b*, *c*}.
- A (non-erasing) morphism $arphi:\mathcal{A}^*
 ightarrow\mathcal{A}^*$,
 - \blacktriangleright 0 \rightarrow 01, 1 \rightarrow 10,
 - $\blacktriangleright \ a \to ab, b \to a,$
 - $\blacktriangleright \ 0 \rightarrow 10, 1 \rightarrow 01.$

э

Alphabet, (endo)morphism

- \bullet An alphabet ${\cal A}$ is a finite set of letters,
 - ▶ {0,1,2,3},
 - ► {*a*, *b*, *c*}.
- A (non-erasing) morphism $arphi:\mathcal{A}^*
 ightarrow\mathcal{A}^*$,
 - \blacktriangleright 0 \rightarrow 01, 1 \rightarrow 10,
 - $\blacktriangleright \ a \to ab, b \to a,$
 - $\blacktriangleright \ 0 \rightarrow 10, 1 \rightarrow 01.$
- An infinite word ${\bf u}$ is a periodic point of φ iff

$$\varphi^\ell(\mathsf{u}) = \mathsf{u}$$

for some ℓ . If $\ell = 1$, **u** is a fixed point.

D0L system

Definition

A DOL-system is a triplet $G = (A, \varphi, w)$ where A is an alphabet, φ a morphism on A, and $w \in A^+$ is the axiom. The sequence of G:

$$L(G) = \{w_0 = w, w_1 = \varphi(w_0), w_2 = \varphi(w_1), \ldots\}.$$

All factors of w_1, w_2, \ldots form the language of G, denoted as sub(L(G)).

э

D0L system

Definition

A DOL-system is a triplet $G = (A, \varphi, w)$ where A is an alphabet, φ a morphism on A, and $w \in A^+$ is the axiom. The sequence of G:

$$L(G) = \{w_0 = w, w_1 = \varphi(w_0), w_2 = \varphi(w_1), \ldots\}.$$

All factors of w_1, w_2, \ldots form the language of G, denoted as sub(L(G)).

 $G = (\{0, 1, 2, 3, 4\}, \varphi, 013)$ with $\varphi = (0310, 212, 121, 4, 3)$:

 $w_0 = 013$ $w_1 = 0310\,212\,4$ $w_2 = 031041210310\,121212121\,3$ $w_3 = 0310412103103212121212\cdots 0310\,2121212121\cdots 212\,4$

 $\varphi = (0310, 212, 121, 4, 3)$

э

< □ > < □ > < □ > < □ > < □ >

 $\varphi = (0310, 212, 121, 4, 3)$

Finite system: $G = (A, \varphi, 4)$:

$$L(G) = \{4, 3, 4, 3, \ldots\}, \quad sub(L(G)) = \{3, 4\}.$$

Definition

Given a morphism φ on \mathcal{A} . A letter $a \in \mathcal{A}$ is bounded if the language of $(\mathcal{A}, \varphi, a)$ is finite.

 $\varphi = (0310, 212, 121, 4, 3)$

Finite system: $G = (A, \varphi, 4)$:

$$L(G) = \{4, 3, 4, 3, \ldots\}, \quad sub(L(G)) = \{3, 4\}.$$

Definition

Given a morphism φ on \mathcal{A} . A letter $a \in \mathcal{A}$ is bounded if the language of $(\mathcal{A}, \varphi, a)$ is finite.

Periodic system $G = (A, \varphi, 2)$.

 $\varphi = (0310, 212, 121, 4, 3)$

Finite system: $G = (A, \varphi, 4)$:

$$L(G) = \{4, 3, 4, 3, \ldots\}, \quad sub(L(G)) = \{3, 4\}.$$

Definition

Given a morphism φ on \mathcal{A} . A letter $a \in \mathcal{A}$ is bounded if the language of $(\mathcal{A}, \varphi, a)$ is finite.

Periodic system $G = (A, \varphi, 2)$.

Aperiodic system $G = (A, \varphi, 0)$, in fact, the language of G is the language of the fixed point of φ starting with 0.

Bispecial factors (a.k.a. BS factors)

Definition

For a word v in a language $\mathcal{L} \subset \mathcal{A}^*$ we define the set of left extensions

$$Lext(v) := \{a \in \mathcal{A} \mid av \in \mathcal{L}\}.$$

If #Lext(v) > 1, then v is said to be left special (LS) factor. Right special (RS) factors are defined. If v is both LS and RS, it is called bispecial.

Bispecial factors (a.k.a. BS factors)

Definition

For a word v in a language $\mathcal{L} \subset \mathcal{A}^*$ we define the set of left extensions

```
Lext(v) := \{a \in \mathcal{A} \mid av \in \mathcal{L}\}.
```

If #Lext(v) > 1, then v is said to be left special (LS) factor. Right special (RS) factors are defined. If v is both LS and RS, it is called bispecial.

Example

Thue-Morse: φ : (01, 10), fixed point $\varphi^{\infty}(0) = 0110100101010101010101010$

100 is LS but not RS

Bispecial factors (a.k.a. BS factors)

Definition

For a word v in a language $\mathcal{L} \subset \mathcal{A}^*$ we define the set of left extensions

```
Lext(v) := \{a \in \mathcal{A} \mid av \in \mathcal{L}\}.
```

If #Lext(v) > 1, then v is said to be left special (LS) factor. Right special (RS) factors are defined. If v is both LS and RS, it is called bispecial.

Example

Thue-Morse: φ : (01, 10), *fixed point* $\varphi^{\infty}(0) = 01101001010101010101010010110\cdots$

100 is LS but not RS

1001 *is BS*

BS factors: why bother? - Factor complexity

The factor complexity of a language \mathcal{L} :

 $C_{\mathcal{L}}(n) =$ number of distinct factors of length *n*.

э

BS factors: why bother? - Factor complexity

The factor complexity of a language \mathcal{L} :

 $C_{\mathcal{L}}(n) =$ number of distinct factors of length *n*.

We have

$$\mathcal{C}(n+1) - \mathcal{C}(n) = \sum_{\substack{v \in \mathcal{L}_n \\ v \text{ is LS}}} (\# \text{Lext}(v) - 1).$$

э

BS factors: why bother? - Factor complexity

The factor complexity of a language \mathcal{L} :

 $C_{\mathcal{L}}(n) =$ number of distinct factors of length *n*.

We have

$$\mathcal{C}(n+1) - \mathcal{C}(n) = \sum_{\substack{v \in \mathcal{L}_n \\ v \text{ is } LS}} (\# \text{Lext}(v) - 1).$$

Complete knowledge of all LS factors along with the number of their left extensions allows us to evaluate $C_{\mathcal{L}}(n)$.

3

Factor complexity of D0L languages

Theorem (Pansiot (1984))

Let \mathcal{L} be a language of a DOL system, then one of the following holds:

- (i) $\mathcal{C}_{\mathcal{L}}(n) = \Theta(1)$,
- (ii) $\mathcal{C}_{\mathcal{L}}(n) = \Theta(n)$,
- (iii) $C_{\mathcal{L}}(n) = \Theta(n \log \log n)$,
- (iv) $C_{\mathcal{L}}(n) = \Theta(n \log n)$,
- (v) $\mathcal{C}_{\mathcal{L}}(n) = \Theta(n^2).$

Factor complexity of D0L languages

Theorem (Pansiot (1984))

Let \mathcal{L} be a language of a DOL system, then one of the following holds:

- (i) $\mathcal{C}_{\mathcal{L}}(n) = \Theta(1)$,
- (ii) $\mathcal{C}_{\mathcal{L}}(n) = \Theta(n)$,
- (iii) $C_{\mathcal{L}}(n) = \Theta(n \log \log n)$,
- (iv) $C_{\mathcal{L}}(n) = \Theta(n \log n)$,

(v)
$$\mathcal{C}_{\mathcal{L}}(n) = \Theta(n^2).$$

Theorem (Salomaa, Soittola (1978))

The sequence $|\varphi^n(a)|$ is either bounded or it grows like $n^{x_a}y^n_a$ with $y_a > 1$ and $x_a \in \mathbb{N}$.

3

Example

Let w = 123 and $v = 12312312312 = (123)^3 12$, then $r = \frac{|v|}{|w|} = \frac{11}{3} = 3 + \frac{2}{3}$ and so v is $\frac{11}{3}$ -power of w.

Example

Let w = 123 and $v = 12312312312 = (123)^3 12$, then $r = \frac{|v|}{|w|} = \frac{11}{3} = 3 + \frac{2}{3}$ and so v is $\frac{11}{3}$ -power of w.

Definition

The index of w in a language \mathcal{L} is the number

$$ind(w) = \sup\{r \in \mathbb{Q} \mid w^r \text{ is a factor of } \mathcal{L}\}.$$

The critical exponent of a language $\mathcal L$ is given by

 $E(\mathcal{L}) = \sup\{ind(w) \mid w \in \mathcal{L}\}.$

Example

Let w = 123 and $v = 12312312312 = (123)^3 12$, then $r = \frac{|v|}{|w|} = \frac{11}{3} = 3 + \frac{2}{3}$ and so v is $\frac{11}{3}$ -power of w.

Definition

The index of w in a language \mathcal{L} is the number

$$ind(w) = \sup\{r \in \mathbb{Q} \mid w^r \text{ is a factor of } \mathcal{L}\}.$$

The critical exponent of a language $\mathcal L$ is given by

 $E(\mathcal{L}) = \sup\{ind(w) \mid w \in \mathcal{L}\}.$

(i) $1 < E(\mathcal{L}) \le \infty$, (ii) $E(\mathcal{L}) \to 1 \implies \#\mathcal{A} \to \infty$, (iii) for all real x > 1 there is an \mathcal{L} with $E(\mathcal{L}) = x$ (Krieger, Shallit (2007)).

A word \overline{w} is conjugate of a word w if there are words u and v such that w = uv and $\overline{w} = vu$.

э

< □ > < □ > < □ > < □ > < □ >

A word \overline{w} is conjugate of a word w if there are words u and v such that w = uv and $\overline{w} = vu$.

If w have the maximal index among its conjugates and

$$w^{\operatorname{ind}(w)} = w^k w'$$
 with $\operatorname{ind}(w) > 1$,

then all the following factors are bispecial:

$$w', ww', \ldots, w^{k-1}w'.$$

A word \overline{w} is conjugate of a word w if there are words u and v such that w = uv and $\overline{w} = vu$.

If w have the maximal index among its conjugates and

 $w^{\operatorname{ind}(w)} = w^k w'$ with $\operatorname{ind}(w) > 1$,

then all the following factors are bispecial:

$$w', ww', \ldots, w^{k-1}w'.$$

Definition

Denote by $\mathcal{B}(\mathcal{L})$ the set of ordered pairs (v, w) of factors satisfying the following conditions:

(i) v is a BS factor,

(ii) wv is a power of w in \mathcal{L} .

A word \overline{w} is conjugate of a word w if there are words u and v such that w = uv and $\overline{w} = vu$.

If w have the maximal index among its conjugates and

 $w^{\operatorname{ind}(w)} = w^k w'$ with $\operatorname{ind}(w) > 1$,

then all the following factors are bispecial:

$$w', ww', \ldots, w^{k-1}w'.$$

Definition

Denote by $\mathcal{B}(\mathcal{L})$ the set of ordered pairs (v, w) of factors satisfying the following conditions:

(i) v is a BS factor,

(ii) wv is a power of w in \mathcal{L} .

 $\mathsf{E}(\mathcal{L}) = \sup\{\mathsf{ind}(w) \mid (v, w) \in \mathcal{B}(\mathcal{L}) \text{ for some BS factor } v\}.$

(日) (四) (注) (注) (正)

Critical exponent of fixed points

Theorem (Krieger (2009))

Let φ be a non-erasing morphism defined over a finite alphabet \mathcal{A} , $\mathbf{u} = \varphi^{\infty}(0)$. Let M_{φ} be the incident matrix of φ and $\lambda, \lambda_1, \ldots, \lambda_\ell$ be its eigenvalues. Suppose $E(\mathbf{u}) < \infty$. Then

$$E(\mathbf{u}) \in \mathbb{Q}[\lambda, \lambda_1, \dots, \lambda_\ell]$$

is algebraic of degree at most #A.

Definition

A morphism φ on \mathcal{A} is injective if for all $v_1, v_2 \in \mathcal{A}^*$

$$\varphi(\mathbf{v}_1) = \varphi(\mathbf{v}_2) \implies \mathbf{v}_1 = \mathbf{v}_2,$$

i.e. $\{\varphi(a) \mid a \in A\}$ is a code.

э

< □ > < □ > < □ > < □ > < □ >

Definition

A morphism φ on \mathcal{A} is injective if for all $v_1, v_2 \in \mathcal{A}^*$

$$\varphi(\mathbf{v}_1) = \varphi(\mathbf{v}_2) \implies \mathbf{v}_1 = \mathbf{v}_2,$$

i.e. $\{\varphi(a) \mid a \in A\}$ *is a code.*

It is easy to decide whether a given morphism is injective.

Definition

A morphism φ on \mathcal{A} is injective on a language \mathcal{L} if for all $v_1, v_2 \in \mathcal{L}$

$$\varphi(\mathbf{v}_1) = \varphi(\mathbf{v}_2) \implies \mathbf{v}_1 = \mathbf{v}_2.$$

э

< □ > < □ > < □ > < □ > < □ >

Definition

A morphism φ on \mathcal{A} is injective on a language \mathcal{L} if for all $v_1, v_2 \in \mathcal{L}$

$$\varphi(\mathbf{v}_1) = \varphi(\mathbf{v}_2) \implies \mathbf{v}_1 = \mathbf{v}_2.$$

Example

The morphism $\varphi = (aca, badc, acab, adc)$ is not injective, as $\varphi(ab) = aca badc = acab adc = \varphi(cd)$.

Definition

A morphism φ on \mathcal{A} is injective on a language \mathcal{L} if for all $v_1, v_2 \in \mathcal{L}$

$$\varphi(\mathbf{v}_1) = \varphi(\mathbf{v}_2) \implies \mathbf{v}_1 = \mathbf{v}_2.$$

Example

The morphism $\varphi = (aca, badc, acab, adc)$ is not injective, as $\varphi(ab) = aca badc = acab adc = \varphi(cd)$. But it is injective on the language of the DOL-system ({a, b, c, d}, φ , a) as the factor cd is not included.

Definition

A morphism φ on \mathcal{A} is injective on a language \mathcal{L} if for all $v_1, v_2 \in \mathcal{L}$

$$\varphi(\mathbf{v}_1) = \varphi(\mathbf{v}_2) \implies \mathbf{v}_1 = \mathbf{v}_2.$$

Example

The morphism $\varphi = (aca, badc, acab, adc)$ is not injective, as $\varphi(ab) = aca badc = acab adc = \varphi(cd)$. But it is injective on the language of the D0L-system ({a, b, c, d}, φ , a) as the factor cd is not included.

Open Problem

Given a D0L system (A, φ, w) . Decide whether φ is injective on its language.

Primitive morphisms

Definition

A morphism φ on \mathcal{A} is primitive if there exists $k \in \mathbb{N}$ such that for any pair of (possibly equal) letters $a, b \in \mathcal{A}$ the word $\varphi^k(a)$ contains b as its factor.

If φ is primitive, the D0L systems $(\mathcal{A}, \varphi, a)$ and $(\mathcal{A}, \varphi, b)$ have the same language for all $a, b \in \mathcal{A}$.

Primitive morphisms

Definition

A morphism φ on \mathcal{A} is primitive if there exists $k \in \mathbb{N}$ such that for any pair of (possibly equal) letters $a, b \in \mathcal{A}$ the word $\varphi^k(a)$ contains b as its factor.

If φ is primitive, the D0L systems $(\mathcal{A}, \varphi, a)$ and $(\mathcal{A}, \varphi, b)$ have the same language for all $a, b \in \mathcal{A}$.

Example

Thue-Morse (01, 10) is primitive (with k = 1), Fibonacci (01, 0) as well (with k = 2). The morphism (0310, 212, 121, 4, 3) is not primitive.

Repetitive D0L system

Definition

A DOL system G is repetitive if for all $k \in \mathbb{N}$, there exists a word v such that v^k is in the language of G.

It is strongly repetitive if there is a word v such that v^k is in the language of G.
Definition

A DOL system G is repetitive if for all $k \in \mathbb{N}$, there exists a word v such that v^k is in the language of G.

It is strongly repetitive if there is a word v such that v^k is in the language of G.

Example

The DOL system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3) is strongly repetitive with v = 21.

Definition

A DOL system G is repetitive if for all $k \in \mathbb{N}$, there exists a word v such that v^k is in the language of G.

It is strongly repetitive if there is a word v such that v^k is in the language of G.

Example

The DOL system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3) is strongly repetitive with v = 21.

Theorem (Ehrenfeucht, Rozenberg (1983))

Every repetitive D0L system is strongly repetitive.

Pushy D0L system

For a given D0L system $G = (A, \varphi, w)$ denote A_0 the set of all bounded letters.

Definition

A DOL system G is pushy, if its language contains infinite number of factors over \mathcal{A}_0 .

If is non-pushy, we denote C_P the length of the longest factor over \mathcal{A}_0 .

Pushy D0L system

For a given D0L system $G = (A, \varphi, w)$ denote A_0 the set of all bounded letters.

Definition

A DOL system G is pushy, if its language contains infinite number of factors over \mathcal{A}_0 .

If is non-pushy, we denote C_P the length of the longest factor over \mathcal{A}_0 .

Example

The D0L system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3). The bounded letters are $A_0 = \{3,4\}$. The system is non-pushy and $C_P = 1$

Pushy D0L system

For a given D0L system $G = (A, \varphi, w)$ denote A_0 the set of all bounded letters.

Definition

A DOL system G is pushy, if its language contains infinite number of factors over A_0 .

If is non-pushy, we denote C_P the length of the longest factor over \mathcal{A}_0 .

Example

The DOL system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3). The bounded letters are $A_0 = \{3,4\}$. The system is non-pushy and $C_P = 1$

Example

Consider again the DOL system ({0,1,2,3,4}, φ ,0) with $\varphi = (03103, 212, 121, 4, 3)$. The bounded letters are $\mathcal{A}_0 = \{3, 4\}$. The system is pushy as (34)^k is a factor for all $k \in \mathbb{N}$.

э

< □ > < □ > < □ > < □ > < □ >

Pushy D0L system: what is known

- It is decidable whether a DOL system is pushy and C_P is effectively computable (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist a ∈ A, k ∈ N⁺, v ∈ A^{*} and u ∈ A⁺₀ such that φ^k(a) = vau or φ^k(a) = uav.

Pushy D0L system: what is known

- It is decidable whether a DOL system is pushy and C_P is effectively computable (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist a ∈ A, k ∈ N⁺, v ∈ A^{*} and u ∈ A⁺₀ such that φ^k(a) = vau or φ^k(a) = uav.
- An algorithm based on a simple graphs given by (KK, ŠS (2013)).
 - Graph on unbounded letters: there is a directed edge from *a* to *b* with label *u* if $\varphi(a) = vbu$ with $v \in A^*$ and $u \in A_0^*$.
 - Pushy iff there is a cycle with a non empty label.

Pushy D0L system: what is known

- It is decidable whether a DOL system is pushy and C_P is effectively computable (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist a ∈ A, k ∈ N⁺, v ∈ A^{*} and u ∈ A⁺₀ such that φ^k(a) = vau or φ^k(a) = uav.
- An algorithm based on a simple graphs given by (KK, ŠS (2013)).
 - Graph on unbounded letters: there is a directed edge from *a* to *b* with label *u* if $\varphi(a) = vbu$ with $v \in A^*$ and $u \in A_0^*$.
 - Pushy iff there is a cycle with a non empty label.

Theorem (Cassaigne (2010))

If G is a non-erasing pushy DOL system, then there exist $K \in \mathbb{N}$ and a finite set \mathcal{U} of words from \mathcal{A}_0^+ such that every factor from $sub(L(G)) \cap \mathcal{A}_0^+$ is of one of the following three forms:

(i) w_1 , (ii) $w_1 u_1^{k_1} w_2$, (iii) $w_1 u_1^{k_1} w_2 u_2^{k_2} w_3$, where $u_1, u_2 \in \mathcal{U}$, $|w_i| < K$ for all $j \in \{1, 2, 3\}$, and $k_1, k_2 \in \mathbb{N}^+$.

Circular D0L systems

Definition

Let $G = (A, \varphi, w)$ be a D0L system with φ injective and let w be a factor of its language \mathcal{L} . An ordered pair of factors (w_1, w_2) is called a synchronizing point of w if $w = w_1w_2$ and

 $\forall v_1, v_2 \in \mathcal{A}^*, (v_1wv_2 \in \varphi(\mathcal{L}) \Rightarrow v_1w_1 \in \varphi(\mathcal{L}) \text{ and } v_2w_2 \in \varphi(\mathcal{L}).$

A factor with at least one synchronizing point is called non-synchronized.

Circular D0L systems

Definition

Let $G = (A, \varphi, w)$ be a D0L system with φ injective and let w be a factor of its language \mathcal{L} . An ordered pair of factors (w_1, w_2) is called a synchronizing point of w if $w = w_1w_2$ and

 $\forall v_1, v_2 \in \mathcal{A}^*, (v_1wv_2 \in \varphi(\mathcal{L}) \Rightarrow v_1w_1 \in \varphi(\mathcal{L}) \text{ and } v_2w_2 \in \varphi(\mathcal{L}).$

A factor with at least one synchronizing point is called non-synchronized.

Definition

A DOL system is circular if there is only a finite number of non-synchronized factors. The smallest C_S such that $|v| > C_S \implies v$ is non-synchronized. The number C_S is called synchronizing delay.

Circular D0L systems

Definition

Let $G = (A, \varphi, w)$ be a DOL system with φ injective and let w be a factor of its language \mathcal{L} . An ordered pair of factors (w_1, w_2) is called a synchronizing point of w if $w = w_1 w_2$ and

 $\forall v_1, v_2 \in \mathcal{A}^*, (v_1wv_2 \in \varphi(\mathcal{L}) \Rightarrow v_1w_1 \in \varphi(\mathcal{L}) \text{ and } v_2w_2 \in \varphi(\mathcal{L}).$

A factor with at least one synchronizing point is called non-synchronized.

Definition

A DOL system is circular if there is only a finite number of non-synchronized factors. The smallest C_S such that $|v| > C_S \implies v$ is non-synchronized. The number C_S is called synchronizing delay.

Open Problem

Given a circular D0L system, is there some bound on the value of the synchronizing delay?

Karel Klouda (FIT, CTU in Prague)

Bispecial factors in DOL languages

Circular D0L systems: what is (un)known

Theorem (Mignosi, Séébold (1993))

A D0L system with an injective morphism is repetitive iff it is circular and non-pushy.

Circular D0L systems: what is (un)known

Theorem (Mignosi, Séébold (1993))

A D0L system with an injective morphism is repetitive iff it is circular and non-pushy.

Conjecture

If G is a non-circular D0L system, then there exist $K \in \mathbb{N}$ and a finite set \mathcal{U} of words from \mathcal{A}^+ such that every non-synchronized factor from $sub(L(G)) \cap \mathcal{A}^+$ is of one of the following three forms:

(i) w_1 , (ii) $w_1 u_1^{k_1} w_2$, (maybe: $w_1 u_1^{k_1} w_2 u_2^{k_2} w_3$), where $u_1, u_2 \in \mathcal{U}$, $|w_j| < K$ for all $j \in \{1, 2, 3\}$, and $k_1, k_2 \in \mathbb{N}^+$.

Circular D0L systems: what is (un)known

Theorem (Mignosi, Séébold (1993))

A D0L system with an injective morphism is repetitive iff it is circular and non-pushy.

Conjecture

If G is a non-circular D0L system, then there exist $K \in \mathbb{N}$ and a finite set \mathcal{U} of words from \mathcal{A}^+ such that every non-synchronized factor from $sub(L(G)) \cap \mathcal{A}^+$ is of one of the following three forms:

Witnesses:

- (Mignosi, Séébold (1993)): if there is infinite non-synchronized factor, then there is an infinite repetition.
- (KK, SŠ (2013)): if a DOL system is not circular, then there are infinite non-synchronized factors of the form (*ii*).

Karel Klouda (FIT, CTU in Prague)

Bispecial factors in D0L languages

D0L systems

Example: intuitive definition of *f*-image

Definition

In a language $\mathcal{L}((w_1, w_3), v, (w_2, w_4))$ is called a BS triplet if w_i an v are empty words and $w_1vw_2, w_3vw_4 \in \mathcal{L}$ or $w_1vw_4, w_3vw_2 \in \mathcal{L}$.

Intuitive definition of *f*-image of BS triplets using graph of prolongations for $\varphi = (012, 112, 102)$:

Example: intuitive definition of *f*-image

Definition

In a language $\mathcal{L}((w_1, w_3), v, (w_2, w_4))$ is called a BS triplet if w_i an v are empty words and $w_1vw_2, w_3vw_4 \in \mathcal{L}$ or $w_1vw_4, w_3vw_2 \in \mathcal{L}$.

Intuitive definition of *f*-image of BS triplets using graph of prolongations for $\varphi = (012, 112, 102)$:

All BS triplets are f^n -images of the finite set of initial BS triplets:

Example: intuitive definition of *f*-image

The morphism $\varphi = (0012, 2, 012)$:

All BS triplets are f^n -images of the finite set of initial BS triplets:

A (1) > A (2) > A

Theorem (KK (2012))

For injective non-pushy and circular DOL system there exist well defined graphs of prolongations (finite number of vertices, each with out-degree equal to one) and a finite set of initial BS triplets such that each BS triplet is the fⁿ-image of an initial BS triplet.

Ingredients of the proof:

- vertices of the graphs are all pairs of w_1, w_2 such that
 - ▶ w₁, w₂ are factors of the language,
 - the last (resp. first) letters of w_1 and w_2 are distinct,
 - $|w_1| = |w_2| = C_S \cdot C_P$.
- Initial triplets $((w_1, w_3), v, (w_2, w_4))$ are those where v is non-synchronized.

Conjecture

For (injective) DOL system there exist well defined graphs of prolongations (finite number of vertices, each with out-degree equal to one) and a finite set of initial BS triplets such that each BS triplet is the f^n -image of an initial BS triplet.

Conjecture

For (injective) DOL system there exist well defined graphs of prolongations (finite number of vertices, each with out-degree equal to one) and a finite set of initial BS triplets such that each BS triplet is the f^n -image of an initial BS triplet.

What seems to be needed:

• Relaxing the definition of vertices for pushy DOL systems: (w_1, w_2) is a vertex with $|w_i|$ bounded by some constant or $w_i = u^{\infty}v$ where v is bounded and u is from a finite sets of factors.

Conjecture

For (injective) DOL system there exist well defined graphs of prolongations (finite number of vertices, each with out-degree equal to one) and a finite set of initial BS triplets such that each BS triplet is the f^n -image of an initial BS triplet.

What seems to be needed:

- Relaxing the definition of vertices for pushy DOL systems: (w_1, w_2) is a vertex with $|w_i|$ bounded by some constant or $w_i = u^{\infty}v$ where v is bounded and u is from a finite sets of factors.
- Redefine the set of initial BS triplets: the long enough non-synchronized BS triplets containing long repetitions must be treated separately.

Conjecture

For (injective) DOL system there exist well defined graphs of prolongations (finite number of vertices, each with out-degree equal to one) and a finite set of initial BS triplets such that each BS triplet is the f^n -image of an initial BS triplet.

What seems to be needed:

- Relaxing the definition of vertices for pushy DOL systems: (w_1, w_2) is a vertex with $|w_i|$ bounded by some constant or $w_i = u^{\infty}v$ where v is bounded and u is from a finite sets of factors.
- Redefine the set of initial BS triplets: the long enough non-synchronized BS triplets containing long repetitions must be treated separately.
- We definitely need to know all infinite repetitions!

History:

(Ehrenfeucht, Rozenberg (1983)): Repetitiveness is decidable (but no reasonable algorithm).

3

History:

- (Ehrenfeucht, Rozenberg (1983)): Repetitiveness is decidable (but no reasonable algorithm).
- (Mignosi, Séébold (1993)): Different proof of decidability (but no reasonable algorithm).

э

History:

- (Ehrenfeucht, Rozenberg (1983)): Repetitiveness is decidable (but no reasonable algorithm).
- (Mignosi, Séébold (1993)): Different proof of decidability (but no reasonable algorithm).
- (Kobayashi and Otto (2000)): Decidability and (sort of) reasonable algorithm.

History:

- (Ehrenfeucht, Rozenberg (1983)): Repetitiveness is decidable (but no reasonable algorithm).
- (Mignosi, Séébold (1993)): Different proof of decidability (but no reasonable algorithm).
- (Kobayashi and Otto (2000)): Decidability and (sort of) reasonable algorithm.

Related results:

- Question: given a morphism φ with an infinite fixed point **u** starting in *a*, is **u** eventually periodic?
 - (Pansiot (1986)), (Harju, Linna (1986)), (Honkala (2008))

3

History:

- (Ehrenfeucht, Rozenberg (1983)): Repetitiveness is decidable (but no reasonable algorithm).
- (Mignosi, Séébold (1993)): Different proof of decidability (but no reasonable algorithm).
- (Kobayashi and Otto (2000)): Decidability and (sort of) reasonable algorithm.

Related results:

- Question: given a morphism φ with an infinite fixed point **u** starting in *a*, is **u** eventually periodic?
 - (Pansiot (1986)), (Harju, Linna (1986)), (Honkala (2008))
- Question: given a morphism φ with an infinite fixed point **u** starting in *a*, is **u** purely periodic?
 - ► (Lando (1991)): simple algorithm is given (as we shall see ...)

イロト 不得 トイヨト イヨト 二日

Infinite periodic factors

Definition

Given a D0L system G, we say that v^{∞} is an infinite periodic factor of G if v is a non-empty word and $v^k \in sub(L(G))$ for all positive integers k. Let v be non-empty and primitive (not a power of shorter word). We say that infinite periodic factors v^{∞} and u^{∞} are equivalent if u is a power of a conjugate of v. We denote the equivalence class containing v^{∞} by $[v]^{\infty}$.

Infinite periodic factors

Definition

Given a D0L system G, we say that v^{∞} is an infinite periodic factor of G if v is a non-empty word and $v^k \in sub(L(G))$ for all positive integers k. Let v be non-empty and primitive (not a power of shorter word). We say that infinite periodic factors v^{∞} and u^{∞} are equivalent if u is a power of a conjugate of v. We denote the equivalence class containing v^{∞} by $[v]^{\infty}$.

Problem: Given a D0L system, find all $[v]^{\infty}$.

Infinite periodic factors over bounded letters

There is an infinite periodic factor $[v]^{\infty}$ in G iff G is pushy. We have already seen how to find all such $v \dots$

Infinite periodic factors containing an unbounded letter

Theorem (KK, ŠS (2013))

If $[v]^{\infty}$ is an infinite periodic factor of a D0L system $G = (\mathcal{A}, \varphi, w)$ such that $v \notin \mathcal{A}_0^+$, then there exist

- u such that u^{∞} is equivalent to v^{∞} ,
- $a \in A$ and $\ell \leq #A$ such that u^{∞} is the fixed point of φ^{ℓ} starting with a.

< ロ > < 同 > < 三 > < 三)

Infinite periodic factors containing an unbounded letter

Theorem (KK, ŠS (2013))

If $[v]^{\infty}$ is an infinite periodic factor of a D0L system $G = (\mathcal{A}, \varphi, w)$ such that $v \notin \mathcal{A}_0^+$, then there exist

- u such that u^{∞} is equivalent to v^{∞} ,
- $a \in A$ and $\ell \leq #A$ such that u^{∞} is the fixed point of φ^{ℓ} starting with a.

In other words: all infinite periodic factors containing an unbounded letter are purely periodic periodic points of φ .

But all purely periodic periodic points of an morphism can be found by the algorithm by Lando (1993)!

The algorithm by Lando

Problem: for a morphism φ over \mathcal{A} , letter $a \in \mathcal{A}$ and integer ℓ such that $\varphi^{\ell}(a) = av$ with $v \in \mathcal{A}^+$ decide whether $(\varphi^{\ell})^{\infty}(a)$ is purely periodic:

- If v ∈ A₀⁺, return the result: (φ^ℓ)[∞](a) is not purely periodic (but eventually periodic).
- Apply φ^ℓ to a until (φ^ℓ)^k(a) contains two occurrences of one unbounded letter.
- If this letter is not a, then (φ^ℓ)[∞](a) is not periodic, if it is, denote w the longest prefix containing a only as the first letter.
- Now, $(\varphi^{\ell})^{\infty}(a)$ is periodic if and only if $\varphi^{\ell}(w) = w^{m}$ for some integer $m \geq 2$.

イロト イボト イヨト イヨト

Corollary: primitive morphisms generates circular languages

Theorem (Mossé (1991))

Let φ injective and primitive with an aperiodic fixed point **u**, then the language of **u** is circular.

Důkaz.

We study D0L system $G = (A, \varphi, a)$ where a is the first letter of **u**.

• Clearly *G* is non-pushy (due to primitiveness).

イロト イポト イヨト イヨー

Corollary: primitive morphisms generates circular languages

Theorem (Mossé (1991))

Let φ injective and primitive with an aperiodic fixed point **u**, then the language of **u** is circular.

Důkaz.

We study D0L system $G = (A, \varphi, a)$ where a is the first letter of **u**.

- Clearly G is non-pushy (due to primitiveness).
- We know: repetitive iff circular and non-pushy (Mignosi, Séébold (1993)), therefore G is circular iff G is not repetitive.

イロト イポト イヨト イヨー
Corollary: primitive morphisms generates circular languages

Theorem (Mossé (1991))

Let φ injective and primitive with an aperiodic fixed point **u**, then the language of **u** is circular.

Důkaz.

We study D0L system $G = (A, \varphi, a)$ where a is the first letter of **u**.

- Clearly G is non-pushy (due to primitiveness).
- We know: repetitive iff circular and non-pushy (Mignosi, Séébold (1993)), therefore G is circular iff G is not repetitive.
- If G is repetitive, it must contain a purely periodic periodic point. A contradiction, since all periodic points have the same language!

< □ > < 同 > < 回 > < 回 >

Thank you for your attention! Thank you for your act 31 / 31

Karel Klouda (FIT, CTU in Prague)

Bispecial factors in DOL languages

MELA 2013 10th September 2013