An Algorithm Enumerating All Infinite Repetitions in a D0L System

Karel Klouda¹ karel.klouda@fit.cvut.cz

joint work with Štěpán Starosta¹

¹Czech Technical University in Prague

Words 2013 in Turku 18th September

D0L system

Definition

A DOL-system is a triplet $G = (\mathcal{A}, \varphi, w)$ where \mathcal{A} is an alphabet, φ a morphism on \mathcal{A} , and $w \in \mathcal{A}^+$ is the axiom. The sequence of G:

$$L(G) = \{w_0 = w, w_1 = \varphi(w_0), w_2 = \varphi(w_1), \ldots\}.$$

All factors of w_1, w_2, \ldots form the language of G, denoted as S(L(G)).

D0L system

Definition

A DOL-system is a triplet $G = (\mathcal{A}, \varphi, w)$ where \mathcal{A} is an alphabet, φ a morphism on \mathcal{A} , and $w \in \mathcal{A}^+$ is the axiom. The sequence of G:

$$L(G) = \{w_0 = w, w_1 = \varphi(w_0), w_2 = \varphi(w_1), \ldots\}.$$

All factors of w_1, w_2, \ldots form the language of G, denoted as S(L(G)).

$$G = (\{0, 1, 2, 3, 4\}, \varphi, 013)$$
 with $\varphi = (0310, 212, 121, 4, 3)$:

$$w_0 = 013$$

$$w_1 = 0310\,212\,4$$

$$w_2 = 031041210310\,121212121\,3$$

$$w_3 = 0310412103103212121212\cdots 0310\,2121212121\cdots 212\,4$$

Repetitive D0L system

Definition

A DOL system G is repetitive if for all $k \in \mathbb{N}$ there exists a word v such that v^k is in the language of G. It is strongly repetitive if there is a word v such that v^k is in the language of G for all k.

< □ > < 同 > < 回 > < 回 >

Repetitive D0L system

Definition

A DOL system G is repetitive if for all $k \in \mathbb{N}$ there exists a word v such that v^k is in the language of G.

It is strongly repetitive if there is a word v such that v^k is in the language of G for all k.

Example

The D0L system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3) is strongly repetitive with v = 21.

Repetitive D0L system

Definition

A DOL system G is repetitive if for all $k \in \mathbb{N}$ there exists a word v such that v^k is in the language of G.

It is strongly repetitive if there is a word v such that v^k is in the language of G for all k.

Example

The D0L system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3) is strongly repetitive with v = 21.

Theorem (Ehrenfeucht, Rozenberg (1983))

Every repetitive D0L system is strongly repetitive.

Our motivation

We have a tool (KK 2012) for generating all bispecial factors in a given D0L system, but it works only for non-repetitive D0L systems.

We needed a fast and easy to program algorithm deciding repetitiveness.

イロト イヨト イヨト

э

Our motivation

We have a tool (KK 2012) for generating all bispecial factors in a given DOL system, but it works only for non-repetitive DOL systems.

We needed a fast and easy to program algorithm deciding repetitiveness.

We also believe this tool can be extended to repetitive DOL systems but:

We (probably) need to know all the infinite repetitions.

Known results

Theorem (Ehrenfeucht, Rozenberg (1983))

It is decidable whether a DOL system is repetitive.

< □ > < 同 > < 回 > < 回 >

Known results

Theorem (Ehrenfeucht, Rozenberg (1983))

It is decidable whether a DOL system is repetitive.

- If the DOL system is not finite nor pushy, their procedure produces unknown number of special DOL systems.
- The original D0L system is repetitive iff one of these special D0L systems is repetitive.
- A special D0L (A, φ, w) system is repetitive iff the morphism is (B, π)-cyclic for some B ⊂ A and π a cyclic permutation of B:
 - for all $b \in \mathcal{B}$, $\varphi = x\pi(x)\pi^2(x)\cdots\pi^k(x)$ with $k = |\varphi(b)| 1$,
 - ▶ for all $b \in B$: if $c = \pi(b)$ and d is the last letter of $\varphi(b)$, then $\pi(d)$ is the first letter of $\varphi(c)$.

イロト イボト イヨト イヨト

• Mignosi, Séébold (1993): they addressed a different problem, decidability of repetitiveness is just a consequence.

• Kobayashi, Otto (2000): polynomial time algorithm, that still can be simplified.

イロト イヨト イヨト

э

Related problem: periodicity

Problem (ultimate periodicity)

Given a D0L system (A, φ, w) such that $\varphi(w) = wy$ for some $y \in A^*$. Is $\varphi^{\omega}(w)$ ultimately periodic?

- First independent proofs: Harju, Linna (1986), Pansiot (1986).
- Other proofs: Honkala (2008), Halava, Harju, Kärki (WORDS 2011).

< ロ > < 同 > < 回 > < 回 >

Related problem: periodicity

Problem (ultimate periodicity)

Given a D0L system (A, φ, w) such that $\varphi(w) = wy$ for some $y \in A^*$. Is $\varphi^{\omega}(w)$ ultimately periodic?

- First independent proofs: Harju, Linna (1986), Pansiot (1986).
- Other proofs: Honkala (2008), Halava, Harju, Kärki (WORDS 2011).

Problem (eventual ultimate periodicity)

Given a D0L system $(\mathcal{A}, \varphi, w)$. Is there $i \ge 0$ and p > 0 such that $\varphi^p(w_i) = w_i y$ for some $y \in \mathcal{A}^*$ and $(\varphi^p)^{\omega}(w_i)$ ultimately periodic?

- First proofs: Head, Lando (1986).
- Refined proof and algorithm: Lando (1989):
 - Among other things a very simple algorithm deciding whether a fixed point of a morphism is purely periodic is presented.

Infinite periodic factor

Since the repetitions

```
(123)^{\omega}, (123123)^{\omega}, (312)^{\omega}, (231)^{\omega}, \ldots
```

are in fact the same, we define:

Definition

Given a D0L system G, we say that v^{ω} is an infinite periodic factor of G if v is a non-empty word and $v^k \in S(L(G))$ for all integers k.

Let v be non-empty and primitive (not a power of a shorter word). We say that infinite periodic factors v^{ω} and u^{ω} are equivalent if u is a power of a conjugate of v. We denote the equivalence class containing v^{ω} by $[v]^{\omega}$.

イロト 不得 トイヨト イヨト

Example

The morphism

arphi: a
ightarrow aca, b
ightarrow badc, c
ightarrow acab, d
ightarrow adc

is not injective, as $\varphi(ab) = aca \ badc = acab \ adc = \varphi(cd)$. This means that $\{aca, badc, acab, adc\}$ is not a code.

Example

The morphism

arphi: a
ightarrow aca, b
ightarrow badc, c
ightarrow acab, d
ightarrow adc

is not injective, as $\varphi(ab) = aca \ badc = acab \ adc = \varphi(cd)$. This means that $\{aca, badc, acab, adc\}$ is not a code.

By the defect theorem, there must be three (or less) words X, Y, Z from $\{a, b, c, d\}^+$ such that

 $\{aca, badc, acab, adc\}^* = \{X, Y, Z\}^*.$

Example

The morphism

arphi: a
ightarrow aca, b
ightarrow badc, c
ightarrow acab, d
ightarrow adc

is not injective, as $\varphi(ab) = aca \ badc = acab \ adc = \varphi(cd)$. This means that $\{aca, badc, acab, adc\}$ is not a code.

By the defect theorem, there must be three (or less) words X, Y, Z from $\{a, b, c, d\}^+$ such that

 $\{aca, badc, acab, adc\}^* = \{X, Y, Z\}^*.$

$$\begin{array}{lll} g: & X \rightarrow b, & Y \rightarrow aca, & Z \rightarrow adc \\ h: & a \rightarrow Y, & b \rightarrow XZ, & c \rightarrow YX, & d \rightarrow Z \end{array}$$

Example

The morphism

arphi: a
ightarrow aca, b
ightarrow badc, c
ightarrow acab, d
ightarrow adc

is not injective, as $\varphi(ab) = aca \ badc = acab \ adc = \varphi(cd)$. This means that $\{aca, badc, acab, adc\}$ is not a code.

By the defect theorem, there must be three (or less) words X, Y, Z from $\{a, b, c, d\}^+$ such that

 $\{aca, badc, acab, adc\}^* = \{X, Y, Z\}^*.$

$$\begin{array}{ll} g: & X \rightarrow b, \quad Y \rightarrow \textit{aca}, \quad Z \rightarrow \textit{adc} \\ h: & a \rightarrow Y, \quad b \rightarrow XZ, \quad c \rightarrow YX, \quad d \rightarrow Z \end{array}$$

We have: $\varphi = g \circ h$ and

 $\mbox{injective simplification } h \circ g: \quad X \to XZ, \quad Y \to YYXY, \quad Z \to YZYX.$

Definition

Let \mathcal{A} and \mathcal{B} be two finite alphabets and let $\varphi : \mathcal{A}^* \mapsto \mathcal{A}^*$ and $\psi : \mathcal{B}^* \mapsto \mathcal{B}^*$ be morphisms. We say ψ is a simplification of φ , if there exist morphisms $h : \mathcal{A}^* \mapsto \mathcal{B}^*$ and $g : \mathcal{B}^* \mapsto \mathcal{A}^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#\mathcal{B} < \#\mathcal{A}$. If a morphism has no simplification, it is called elementary.

Definition

Let \mathcal{A} and \mathcal{B} be two finite alphabets and let $\varphi : \mathcal{A}^* \mapsto \mathcal{A}^*$ and $\psi : \mathcal{B}^* \mapsto \mathcal{B}^*$ be morphisms. We say ψ is a simplification of φ , if there exist morphisms $h : \mathcal{A}^* \mapsto \mathcal{B}^*$ and $g : \mathcal{B}^* \mapsto \mathcal{A}^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#\mathcal{B} < \#\mathcal{A}$. If a morphism has no simplification, it is called elementary.

• Elementary morphism is injective.

Definition

Let \mathcal{A} and \mathcal{B} be two finite alphabets and let $\varphi : \mathcal{A}^* \mapsto \mathcal{A}^*$ and $\psi : \mathcal{B}^* \mapsto \mathcal{B}^*$ be morphisms. We say ψ is a simplification of φ , if there exist morphisms $h : \mathcal{A}^* \mapsto \mathcal{B}^*$ and $g : \mathcal{B}^* \mapsto \mathcal{A}^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#\mathcal{B} < \#\mathcal{A}$. If a morphism has no simplification, it is called elementary.

• Elementary morphism is injective.

• D0L system $(\mathcal{A}, \varphi, w)$ is repetitive iff $(\mathcal{B}, \psi, h(w))$ is repetitive.

Definition

Let \mathcal{A} and \mathcal{B} be two finite alphabets and let $\varphi : \mathcal{A}^* \mapsto \mathcal{A}^*$ and $\psi : \mathcal{B}^* \mapsto \mathcal{B}^*$ be morphisms. We say ψ is a simplification of φ , if there exist morphisms $h : \mathcal{A}^* \mapsto \mathcal{B}^*$ and $g : \mathcal{B}^* \mapsto \mathcal{A}^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#\mathcal{B} < \#\mathcal{A}$. If a morphism has no simplification, it is called elementary.

- Elementary morphism is injective.
- D0L system $(\mathcal{A}, \varphi, w)$ is repetitive iff $(\mathcal{B}, \psi, h(w))$ is repetitive.
- Lando (1989) + our result: There is one-to-one correspondence between infinite periodic factors of these two DOL systems.

Definition

Let \mathcal{A} and \mathcal{B} be two finite alphabets and let $\varphi : \mathcal{A}^* \mapsto \mathcal{A}^*$ and $\psi : \mathcal{B}^* \mapsto \mathcal{B}^*$ be morphisms. We say ψ is a simplification of φ , if there exist morphisms $h : \mathcal{A}^* \mapsto \mathcal{B}^*$ and $g : \mathcal{B}^* \mapsto \mathcal{A}^*$ satisfying $g \circ h = \varphi$ and $h \circ g = \psi$ and $\#\mathcal{B} < \#\mathcal{A}$. If a morphism has no simplification, it is called elementary.

- Elementary morphism is injective.
- D0L system $(\mathcal{A}, \varphi, w)$ is repetitive iff $(\mathcal{B}, \psi, h(w))$ is repetitive.
- Lando (1989) + our result: There is one-to-one correspondence between infinite periodic factors of these two DOL systems.
- The construction of a simplification of a non-injective morphism can be done in polynomial time.

イロト イボト イヨト イヨト

Graph of infinite factors

Definition

Let $G = (\mathcal{A}, \varphi, w)$ be a D0L-system. The graph of infinite periodic factors of G, denoted P_G , is a directed graph with loops allowed and defined as follows:

() the set of vertices of P_{G} is the set

 $V(\mathbf{P}_G) = \{ [v]^{\omega} \mid v^{\omega} \text{ is an infinite periodic factor of } S(L(G)) \};$

2 there is a directed edge from $[v]^{\omega}$ to $[z]^{\omega}$ if $\varphi(v^{\omega}) \in [z]^{\omega}$.

Obviously, the outdegree of any vertex of P_G is equal to one.

Graph of infinite factors

Lemma

If $G = (A, \varphi, w)$ is an injective DOL system, then any vertex $[v]^{\omega} \in P_G$ has indegree at least 1.

< □ > < □ > < □ > < □ > < □ >

э

Graph of infinite factors

Lemma

If $G = (\mathcal{A}, \varphi, w)$ is an injective DOL system, then any vertex $[v]^{\omega} \in P_G$ has indegree at least 1.

Corollary

If $G = (A, \varphi, w)$ is an injective DOL system, then its graph of infinite periodic factors P_G is 1-regular. It other words, P_G consists of disjoint cycles.

イロト イヨト イヨト

12 / 18

Pushy D0L system

Definition

Given a morphism φ on \mathcal{A} . A letter $a \in \mathcal{A}$ is bounded if the language of $(\mathcal{A}, \varphi, a)$ is finite; \mathcal{A}_0 is the set of all bounded letters.

Definition

A D0L system G is pushy, if its language contains infinite number of factors over \mathcal{A}_0 .

Pushy D0L system

Definition

Given a morphism φ on \mathcal{A} . A letter $a \in \mathcal{A}$ is bounded if the language of $(\mathcal{A}, \varphi, a)$ is finite; \mathcal{A}_0 is the set of all bounded letters.

Definition

A D0L system G is pushy, if its language contains infinite number of factors over $\mathcal{A}_0.$

Example

The D0L system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3). The bounded letters are $A_0 =$ {3,4}. But it is not pushy

Pushy D0L system

Definition

Given a morphism φ on \mathcal{A} . A letter $a \in \mathcal{A}$ is bounded if the language of $(\mathcal{A}, \varphi, a)$ is finite; \mathcal{A}_0 is the set of all bounded letters.

Definition

A D0L system G is pushy, if its language contains infinite number of factors over $\mathcal{A}_0.$

Example

The DOL system ({0,1,2,3,4}, φ ,0) with φ = (0310,212,121,4,3). The bounded letters are $A_0 = \{3,4\}$. But it is not pushy

Example

Consider again the D0L system ({0,1,2,3,4}, φ ,0) with $\varphi = (03103, 212, 121, 4, 3)$. The bounded letters are $\mathcal{A}_0 = \{3, 4\}$. The system is pushy as (34)^k is a factor for all $k \in \mathbb{N}$.

Pushy D0L system: what is known

- It is decidable whether a D0L system is pushy (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist a ∈ A, k ∈ N⁺, v ∈ A^{*} and u ∈ A⁺₀ such that φ^k(a) = vau or φ^k(a) = uav.

イロト イヨト イヨト

3

Pushy D0L system: what is known

- It is decidable whether a DOL system is pushy (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist a ∈ A, k ∈ N⁺, v ∈ A^{*} and u ∈ A⁺₀ such that φ^k(a) = vau or φ^k(a) = uav.
- An algorithm based on a simple graphs.
 - Graphs on unbounded letters: there is a directed edge from *a* to *b* with label *u* if $\varphi(a) = vbu$ (resp. $\varphi(a) = ubv$) with $v \in \mathcal{A}^*$ and $u \in \mathcal{A}^*_0$.
 - Pushy iff there is a cycle with a non empty label.

Pushy D0L system: what is known

- It is decidable whether a DOL system is pushy (Ehrenfeucht, Rozenberg (1983)).
 - Pushy iff edge condition: there exist a ∈ A, k ∈ N⁺, v ∈ A^{*} and u ∈ A⁺₀ such that φ^k(a) = vau or φ^k(a) = uav.
- An algorithm based on a simple graphs.
 - Graphs on unbounded letters: there is a directed edge from a to b with label u if φ(a) = vbu (resp. φ(a) = ubv) with v ∈ A* and u ∈ A*.
 - Pushy iff there is a cycle with a non empty label.

Theorem (Cassaigne, Nicolas (2010))

If G is a non-erasing pushy DOL system, then there exist $K \in \mathbb{N}$ and a finite set \mathcal{U} of words from \mathcal{A}_0^+ such that every factor from $S(L(G)) \cap \mathcal{A}_0^+$ is of one of the following three forms:

(i) w_1 , (ii) $w_1 u_1^{k_1} w_2$, (iii) $w_1 u_1^{k_1} w_2 u_2^{k_2} w_3$, where $u_1, u_2 \in \mathcal{U}$, $|w_i| < K$ for all $j \in \{1, 2, 3\}$, and $k_1, k_2 \in \mathbb{N}^+$.

Infinite periodic factors containing an unbounded letter

Theorem

If $[v]^{\omega}$ is an infinite periodic factor of a D0L system $G = (\mathcal{A}, \varphi, w)$ such that $v \notin \mathcal{A}_0^+$, then there exist

- u such that u^{ω} is equivalent to v^{ω} ,
- $a \in A$ and $\ell \leq #A$ such that u^{ω} is the fixed point of φ^{ℓ} starting with a.

< □ > < 同 > < 回 > < 回 >

Infinite periodic factors containing an unbounded letter

Theorem

If $[v]^{\omega}$ is an infinite periodic factor of a D0L system $G = (\mathcal{A}, \varphi, w)$ such that $v \notin \mathcal{A}_0^+$, then there exist

• u such that u^{ω} is equivalent to v^{ω} ,

• $a \in A$ and $\ell \leq \#A$ such that u^{ω} is the fixed point of φ^{ℓ} starting with a. In other words: all infinite periodic factors containing an unbounded letter are

purely periodic periodic points of φ .

< ロ > < 同 > < 回 > < 回 >

The algorithm by Lando

Problem: for a morphism φ over \mathcal{A} , letter $a \in \mathcal{A}$ and integer ℓ such that $\varphi^{\ell}(a) = av$ with $v \in \mathcal{A}^+$ decide whether $(\varphi^{\ell})^{\infty}(a)$ is purely periodic:

- If v ∈ A₀⁺, return the result: (φ^ℓ)^ω(a) is not purely periodic (but eventually periodic).
- Apply φ^ℓ to a until (φ^ℓ)^k(a) contains two occurrences of one unbounded letter (k < #A).
- If this letter is not a, then (φ^ℓ)^ω(a) is not periodic, if it is, denote u the longest prefix containing a only as the first letter.
- Now, $(\varphi^{\ell})^{\omega}(a)$ is periodic if and only if $\varphi^{\ell}(u) = u^m$ for some integer $m \ge 2$.

イロト 不得 トイヨト イヨト 二日

A note about the algorithm by Ehrenfeucht and Rozenberg

Corollary

Let $G = (\mathcal{A}, \varphi, w)$ with φ injective and $\mathcal{A}_0 = \emptyset$. It holds that G is repetitive iff φ is (\mathcal{B}, π) -cyclic for some $\mathcal{B} \subset alph(S(L(G)))$ and π a cyclic permutation of \mathcal{B} .

Proof.

- There must be a primitive u and $\ell \ge 1$ such that $\varphi^{\ell}(u) = u^{m}$ with $m \ge 2$.
- Each letter is contained in *u* at most once.
- Put B = alph(u) and let π be the permutation determined by the order of letters in u, then φ is (B, π)-cyclic.

Thank you for your attention!

・ロト ・四ト ・ヨト ・ヨト

- 2